NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iotaval Unicode version

Theorem iotaval 4351
Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotaval
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem iotaval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfiota2 4341 . 2
2 vex 2863 . . . . . . 7
3 sbeqalb 3099 . . . . . . . 8
4 equcomi 1679 . . . . . . . 8
53, 4syl6 29 . . . . . . 7
62, 5ax-mp 5 . . . . . 6
76ex 423 . . . . 5
8 equequ2 1686 . . . . . . . . . 10
98eqcoms 2356 . . . . . . . . 9
109bibi2d 309 . . . . . . . 8
1110biimpd 198 . . . . . . 7
1211alimdv 1621 . . . . . 6
1312com12 27 . . . . 5
147, 13impbid 183 . . . 4
1514alrimiv 1631 . . 3
16 uniabio 4350 . . 3
1715, 16syl 15 . 2
181, 17syl5eq 2397 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358  wal 1540   wceq 1642   wcel 1710  cab 2339  cvv 2860  cuni 3892  cio 4338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-un 3215  df-sn 3742  df-pr 3743  df-uni 3893  df-iota 4340
This theorem is referenced by:  iotauni  4352  iota1  4354  iotaex  4357  iota4  4358  iota5  4360
  Copyright terms: Public domain W3C validator