New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > uniabio | Unicode version |
Description: Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
uniabio |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2464 | . . . . 5 | |
2 | 1 | biimpi 186 | . . . 4 |
3 | df-sn 3742 | . . . 4 | |
4 | 2, 3 | syl6eqr 2403 | . . 3 |
5 | 4 | unieqd 3903 | . 2 |
6 | vex 2863 | . . 3 | |
7 | 6 | unisn 3908 | . 2 |
8 | 5, 7 | syl6eq 2401 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wal 1540 wceq 1642 cab 2339 csn 3738 cuni 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-uni 3893 |
This theorem is referenced by: iotaval 4351 iotauni 4352 |
Copyright terms: Public domain | W3C validator |