Step | Hyp | Ref
| Expression |
1 | | dfiota2 4340 |
. 2
⊢ (℩xφ) = ∪{z ∣ ∀x(φ ↔
x = z)} |
2 | | vex 2862 |
. . . . . . 7
⊢ y ∈
V |
3 | | sbeqalb 3098 |
. . . . . . . 8
⊢ (y ∈ V →
((∀x(φ ↔
x = y)
∧ ∀x(φ ↔ x = z)) →
y = z)) |
4 | | equcomi 1679 |
. . . . . . . 8
⊢ (y = z →
z = y) |
5 | 3, 4 | syl6 29 |
. . . . . . 7
⊢ (y ∈ V →
((∀x(φ ↔
x = y)
∧ ∀x(φ ↔ x = z)) →
z = y)) |
6 | 2, 5 | ax-mp 5 |
. . . . . 6
⊢ ((∀x(φ ↔ x = y) ∧ ∀x(φ ↔
x = z))
→ z = y) |
7 | 6 | ex 423 |
. . . . 5
⊢ (∀x(φ ↔ x = y) →
(∀x(φ ↔
x = z)
→ z = y)) |
8 | | equequ2 1686 |
. . . . . . . . . 10
⊢ (y = z →
(x = y
↔ x = z)) |
9 | 8 | eqcoms 2356 |
. . . . . . . . 9
⊢ (z = y →
(x = y
↔ x = z)) |
10 | 9 | bibi2d 309 |
. . . . . . . 8
⊢ (z = y →
((φ ↔ x = y) ↔
(φ ↔ x = z))) |
11 | 10 | biimpd 198 |
. . . . . . 7
⊢ (z = y →
((φ ↔ x = y) →
(φ ↔ x = z))) |
12 | 11 | alimdv 1621 |
. . . . . 6
⊢ (z = y →
(∀x(φ ↔
x = y)
→ ∀x(φ ↔
x = z))) |
13 | 12 | com12 27 |
. . . . 5
⊢ (∀x(φ ↔ x = y) →
(z = y
→ ∀x(φ ↔
x = z))) |
14 | 7, 13 | impbid 183 |
. . . 4
⊢ (∀x(φ ↔ x = y) →
(∀x(φ ↔
x = z)
↔ z = y)) |
15 | 14 | alrimiv 1631 |
. . 3
⊢ (∀x(φ ↔ x = y) →
∀z(∀x(φ ↔
x = z)
↔ z = y)) |
16 | | uniabio 4349 |
. . 3
⊢ (∀z(∀x(φ ↔ x = z) ↔
z = y)
→ ∪{z ∣ ∀x(φ ↔
x = z)}
= y) |
17 | 15, 16 | syl 15 |
. 2
⊢ (∀x(φ ↔ x = y) →
∪{z ∣ ∀x(φ ↔
x = z)}
= y) |
18 | 1, 17 | syl5eq 2397 |
1
⊢ (∀x(φ ↔ x = y) →
(℩xφ) = y) |