NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  opkelopkab Unicode version

Theorem opkelopkab 4247
Description: Kuratowski ordered pair membership in an abstraction of Kuratowski ordered pairs. (Contributed by SF, 12-Jan-2015.)
Hypotheses
Ref Expression
opkelopkab.1
opkelopkab.2
opkelopkab.3
opkelopkab.4
opkelopkab.5
Assertion
Ref Expression
opkelopkab
Distinct variable groups:   ,,   ,,,   ,,,   ,   ,   ,   ,,
Allowed substitution hints:   (,)   (,)   (,)   ()

Proof of Theorem opkelopkab
StepHypRef Expression
1 opkelopkab.4 . 2
2 opkelopkab.5 . 2
3 opkelopkab.1 . . 3
4 opkelopkab.2 . . 3
5 opkelopkab.3 . . 3
63, 4, 5opkelopkabg 4246 . 2
71, 2, 6mp2an 653 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358  wex 1541   wceq 1642   wcel 1710  cab 2339  cvv 2860  copk 4058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-opk 4059
This theorem is referenced by:  sikss1c1c  4268  dfima2  4746  dfco1  4749  dfsi2  4752
  Copyright terms: Public domain W3C validator