| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > opkelopkab | GIF version | ||
| Description: Kuratowski ordered pair membership in an abstraction of Kuratowski ordered pairs. (Contributed by SF, 12-Jan-2015.) |
| Ref | Expression |
|---|---|
| opkelopkab.1 | ⊢ A = {x ∣ ∃y∃z(x = ⟪y, z⟫ ∧ φ)} |
| opkelopkab.2 | ⊢ (y = B → (φ ↔ ψ)) |
| opkelopkab.3 | ⊢ (z = C → (ψ ↔ χ)) |
| opkelopkab.4 | ⊢ B ∈ V |
| opkelopkab.5 | ⊢ C ∈ V |
| Ref | Expression |
|---|---|
| opkelopkab | ⊢ (⟪B, C⟫ ∈ A ↔ χ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opkelopkab.4 | . 2 ⊢ B ∈ V | |
| 2 | opkelopkab.5 | . 2 ⊢ C ∈ V | |
| 3 | opkelopkab.1 | . . 3 ⊢ A = {x ∣ ∃y∃z(x = ⟪y, z⟫ ∧ φ)} | |
| 4 | opkelopkab.2 | . . 3 ⊢ (y = B → (φ ↔ ψ)) | |
| 5 | opkelopkab.3 | . . 3 ⊢ (z = C → (ψ ↔ χ)) | |
| 6 | 3, 4, 5 | opkelopkabg 4246 | . 2 ⊢ ((B ∈ V ∧ C ∈ V) → (⟪B, C⟫ ∈ A ↔ χ)) |
| 7 | 1, 2, 6 | mp2an 653 | 1 ⊢ (⟪B, C⟫ ∈ A ↔ χ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 Vcvv 2860 ⟪copk 4058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 |
| This theorem is referenced by: sikss1c1c 4268 dfima2 4746 dfco1 4749 dfsi2 4752 |
| Copyright terms: Public domain | W3C validator |