NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sikss1c1c Unicode version

Theorem sikss1c1c 4268
Description: A Kuratowski singleton image is a subset of 1c k 1c. (Contributed by SF, 13-Jan-2015.)
Assertion
Ref Expression
sikss1c1c SIk 1c k 1c

Proof of Theorem sikss1c1c
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sik 4193 . . . . 5 SIk
2 eqeq1 2359 . . . . . . 7
323anbi1d 1256 . . . . . 6
432exbidv 1628 . . . . 5
5 eqeq1 2359 . . . . . . 7
653anbi2d 1257 . . . . . 6
762exbidv 1628 . . . . 5
8 vex 2863 . . . . 5
9 vex 2863 . . . . 5
101, 4, 7, 8, 9opkelopkab 4247 . . . 4 SIk
11 opkeq12 4062 . . . . . . 7
12 vex 2863 . . . . . . . . 9
1312snel1c 4141 . . . . . . . 8 1c
14 vex 2863 . . . . . . . . 9
1514snel1c 4141 . . . . . . . 8 1c
16 opkelxpkg 4248 . . . . . . . . 9 1c 1c 1c k 1c 1c 1c
1713, 15, 16mp2an 653 . . . . . . . 8 1c k 1c 1c 1c
1813, 15, 17mpbir2an 886 . . . . . . 7 1c k 1c
1911, 18syl6eqel 2441 . . . . . 6 1c k 1c
20193adant3 975 . . . . 5 1c k 1c
2120exlimivv 1635 . . . 4 1c k 1c
2210, 21sylbi 187 . . 3 SIk 1c k 1c
2322gen2 1547 . 2 SIk 1c k 1c
24 sikssvvk 4267 . . 3 SIk k
25 ssrelk 4212 . . 3 SIk k SIk 1c k 1c SIk 1c k 1c
2624, 25ax-mp 5 . 2 SIk 1c k 1c SIk 1c k 1c
2723, 26mpbir 200 1 SIk 1c k 1c
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   w3a 934  wal 1540  wex 1541   wceq 1642   wcel 1710  cvv 2860   wss 3258  csn 3738  copk 4058  1cc1c 4135   k cxpk 4175   SIk csik 4182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-opk 4059  df-1c 4137  df-xpk 4186  df-sik 4193
This theorem is referenced by:  opkelimagekg  4272  sikexg  4297  dfnnc2  4396
  Copyright terms: Public domain W3C validator