New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sikss1c1c | Unicode version |
Description: A Kuratowski singleton image is a subset of 1c k 1c. (Contributed by SF, 13-Jan-2015.) |
Ref | Expression |
---|---|
sikss1c1c | SIk 1c k 1c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sik 4193 | . . . . 5 SIk | |
2 | eqeq1 2359 | . . . . . . 7 | |
3 | 2 | 3anbi1d 1256 | . . . . . 6 |
4 | 3 | 2exbidv 1628 | . . . . 5 |
5 | eqeq1 2359 | . . . . . . 7 | |
6 | 5 | 3anbi2d 1257 | . . . . . 6 |
7 | 6 | 2exbidv 1628 | . . . . 5 |
8 | vex 2863 | . . . . 5 | |
9 | vex 2863 | . . . . 5 | |
10 | 1, 4, 7, 8, 9 | opkelopkab 4247 | . . . 4 SIk |
11 | opkeq12 4062 | . . . . . . 7 | |
12 | vex 2863 | . . . . . . . . 9 | |
13 | 12 | snel1c 4141 | . . . . . . . 8 1c |
14 | vex 2863 | . . . . . . . . 9 | |
15 | 14 | snel1c 4141 | . . . . . . . 8 1c |
16 | opkelxpkg 4248 | . . . . . . . . 9 1c 1c 1c k 1c 1c 1c | |
17 | 13, 15, 16 | mp2an 653 | . . . . . . . 8 1c k 1c 1c 1c |
18 | 13, 15, 17 | mpbir2an 886 | . . . . . . 7 1c k 1c |
19 | 11, 18 | syl6eqel 2441 | . . . . . 6 1c k 1c |
20 | 19 | 3adant3 975 | . . . . 5 1c k 1c |
21 | 20 | exlimivv 1635 | . . . 4 1c k 1c |
22 | 10, 21 | sylbi 187 | . . 3 SIk 1c k 1c |
23 | 22 | gen2 1547 | . 2 SIk 1c k 1c |
24 | sikssvvk 4267 | . . 3 SIk k | |
25 | ssrelk 4212 | . . 3 SIk k SIk 1c k 1c SIk 1c k 1c | |
26 | 24, 25 | ax-mp 5 | . 2 SIk 1c k 1c SIk 1c k 1c |
27 | 23, 26 | mpbir 200 | 1 SIk 1c k 1c |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 w3a 934 wal 1540 wex 1541 wceq 1642 wcel 1710 cvv 2860 wss 3258 csn 3738 copk 4058 1cc1c 4135 k cxpk 4175 SIk csik 4182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-xpk 4186 df-sik 4193 |
This theorem is referenced by: opkelimagekg 4272 sikexg 4297 dfnnc2 4396 |
Copyright terms: Public domain | W3C validator |