Step | Hyp | Ref
| Expression |
1 | | vex 2863 |
. . . . 5
 |
2 | | vex 2863 |
. . . . 5
 |
3 | | opkelsikg 4265 |
. . . . 5
 
     SIk    k  k   ∼  Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k     Ins2k  Ins2k Sk Ins3k SIk ∼  Ins2k Sk Ins3k   kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k    k Sk   0c k     k 1 1 1c  k 1 1 1c   k 1 1 1 1 1c  k 1 1            
    k  k   ∼  Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k     Ins2k  Ins2k Sk Ins3k SIk ∼  Ins2k Sk Ins3k   kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k    k Sk   0c k     k 1 1 1c  k 1 1 1c   k 1 1 1 1 1c  k 1 1      |
4 | 1, 2, 3 | mp2an 653 |
. . . 4
    SIk    k  k   ∼  Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k     Ins2k  Ins2k Sk Ins3k SIk ∼  Ins2k Sk Ins3k   kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k    k Sk   0c k     k 1 1 1c  k 1 1 1c   k 1 1 1 1 1c  k 1 1            
    k  k   ∼  Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k     Ins2k  Ins2k Sk Ins3k SIk ∼  Ins2k Sk Ins3k   kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k    k Sk   0c k     k 1 1 1c  k 1 1 1c   k 1 1 1 1 1c  k 1 1     |
5 | | setconslem6 4737 |
. . . . . . . 8
   k  k   ∼  Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k     Ins2k  Ins2k Sk Ins3k SIk ∼  Ins2k Sk Ins3k   kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k    k Sk   0c k     k 1 1 1c  k 1 1 1c   k 1 1 1 1 1c  k 1 1  
              |
6 | | opeq1 4579 |
. . . . . . . . 9
  
      |
7 | 6 | eleq1d 2419 |
. . . . . . . 8
           |
8 | | opeq2 4580 |
. . . . . . . . 9
  
      |
9 | 8 | eleq1d 2419 |
. . . . . . . 8
           |
10 | | vex 2863 |
. . . . . . . 8
 |
11 | | vex 2863 |
. . . . . . . 8
 |
12 | 5, 7, 9, 10, 11 | opkelopkab 4247 |
. . . . . . 7
       k  k   ∼  Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k     Ins2k  Ins2k Sk Ins3k SIk ∼  Ins2k Sk Ins3k   kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k    k Sk   0c k     k 1 1 1c  k 1 1 1c   k 1 1 1 1 1c  k 1 1       |
13 | | df-br 4641 |
. . . . . . 7
        |
14 | 12, 13 | bitr4i 243 |
. . . . . 6
       k  k   ∼  Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k     Ins2k  Ins2k Sk Ins3k SIk ∼  Ins2k Sk Ins3k   kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k    k Sk   0c k     k 1 1 1c  k 1 1 1c   k 1 1 1 1 1c  k 1 1      |
15 | 14 | 3anbi3i 1144 |
. . . . 5
            k  k   ∼  Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k     Ins2k  Ins2k Sk Ins3k SIk ∼  Ins2k Sk Ins3k   kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k    k Sk   0c k     k 1 1 1c  k 1 1 1c   k 1 1 1 1 1c  k 1 1     
       |
16 | 15 | 2exbii 1583 |
. . . 4
       
        k  k   ∼  Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k     Ins2k  Ins2k Sk Ins3k SIk ∼  Ins2k Sk Ins3k   kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k    k Sk   0c k     k 1 1 1c  k 1 1 1c   k 1 1 1 1 1c  k 1 1                 |
17 | 4, 16 | bitri 240 |
. . 3
    SIk    k  k   ∼  Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k     Ins2k  Ins2k Sk Ins3k SIk ∼  Ins2k Sk Ins3k   kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k    k Sk   0c k     k 1 1 1c  k 1 1 1c   k 1 1 1 1 1c  k 1 1                |
18 | 17 | opabbii 4627 |
. 2
  
    SIk    k  k   ∼  Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k     Ins2k  Ins2k Sk Ins3k SIk ∼  Ins2k Sk Ins3k   kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k    k Sk   0c k     k 1 1 1c  k 1 1 1c   k 1 1 1 1 1c  k 1 1                     |
19 | | setconslem4 4735 |
. 2
⋃1⋃1    k 
k
 k ∼ 
Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k     Ins2k  Ins2k Sk Ins3k SIk ∼  Ins2k Sk Ins3k   kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k    k Sk   0c k     k 1 1 1c  k 1 1 1c   k 1 1 1 1 1c  k SIk    k  k   ∼  Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k     Ins2k  Ins2k Sk Ins3k SIk ∼  Ins2k Sk Ins3k   kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k    k Sk   0c k     k 1 1 1c  k 1 1 1c   k 1 1 1 1 1c  k 1 1          SIk    k  k   ∼  Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k     Ins2k  Ins2k Sk Ins3k SIk ∼  Ins2k Sk Ins3k   kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k    k Sk   0c k     k 1 1 1c  k 1 1 1c   k 1 1 1 1 1c  k 1 1    |
20 | | df-si 4729 |
. 2
SI   
               |
21 | 18, 19, 20 | 3eqtr4ri 2384 |
1
SI
⋃1⋃1    k 
k
 k ∼ 
Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k     Ins2k  Ins2k Sk Ins3k SIk ∼  Ins2k Sk Ins3k   kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k    k Sk   0c k     k 1 1 1c  k 1 1 1c   k 1 1 1 1 1c  k SIk    k  k   ∼  Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k     Ins2k  Ins2k Sk Ins3k SIk ∼  Ins2k Sk Ins3k   kImagek Imagek Ins3k ∼  Ins3k Sk Ins2k Sk  k 1 1 1c  Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk   k 1 1 1 1 1c  k 1 1 1c Nn k   k ∼ Nn k    k Sk   0c k     k 1 1 1c  k 1 1 1c   k 1 1 1 1 1c  k 1 1    |