| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > qrpprod | Unicode version | ||
| Description: A quadratic relationship over a parallel product. (Contributed by SF, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| qrpprod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brex 4690 |
. . 3
| |
| 2 | opexb 4604 |
. . . 4
| |
| 3 | opexb 4604 |
. . . 4
| |
| 4 | 2, 3 | anbi12i 678 |
. . 3
|
| 5 | 1, 4 | sylib 188 |
. 2
|
| 6 | brex 4690 |
. . . 4
| |
| 7 | brex 4690 |
. . . 4
| |
| 8 | 6, 7 | anim12i 549 |
. . 3
|
| 9 | an4 797 |
. . 3
| |
| 10 | 8, 9 | sylibr 203 |
. 2
|
| 11 | opeq1 4579 |
. . . . . . 7
| |
| 12 | 11 | breq1d 4650 |
. . . . . 6
|
| 13 | breq1 4643 |
. . . . . . 7
| |
| 14 | 13 | anbi1d 685 |
. . . . . 6
|
| 15 | 12, 14 | bibi12d 312 |
. . . . 5
|
| 16 | 15 | imbi2d 307 |
. . . 4
|
| 17 | opeq2 4580 |
. . . . . . 7
| |
| 18 | 17 | breq1d 4650 |
. . . . . 6
|
| 19 | breq1 4643 |
. . . . . . 7
| |
| 20 | 19 | anbi2d 684 |
. . . . . 6
|
| 21 | 18, 20 | bibi12d 312 |
. . . . 5
|
| 22 | 21 | imbi2d 307 |
. . . 4
|
| 23 | opeq1 4579 |
. . . . . . 7
| |
| 24 | 23 | breq2d 4652 |
. . . . . 6
|
| 25 | breq2 4644 |
. . . . . . 7
| |
| 26 | 25 | anbi1d 685 |
. . . . . 6
|
| 27 | 24, 26 | bibi12d 312 |
. . . . 5
|
| 28 | opeq2 4580 |
. . . . . . 7
| |
| 29 | 28 | breq2d 4652 |
. . . . . 6
|
| 30 | breq2 4644 |
. . . . . . 7
| |
| 31 | 30 | anbi2d 684 |
. . . . . 6
|
| 32 | 29, 31 | bibi12d 312 |
. . . . 5
|
| 33 | df-pprod 5739 |
. . . . . . . 8
| |
| 34 | 33 | breqi 4646 |
. . . . . . 7
|
| 35 | trtxp 5782 |
. . . . . . 7
| |
| 36 | 34, 35 | bitri 240 |
. . . . . 6
|
| 37 | brco 4884 |
. . . . . . . . 9
| |
| 38 | vex 2863 |
. . . . . . . . . . . . 13
| |
| 39 | vex 2863 |
. . . . . . . . . . . . 13
| |
| 40 | 38, 39 | opbr1st 5502 |
. . . . . . . . . . . 12
|
| 41 | eqcom 2355 |
. . . . . . . . . . . 12
| |
| 42 | 40, 41 | bitri 240 |
. . . . . . . . . . 11
|
| 43 | 42 | anbi1i 676 |
. . . . . . . . . 10
|
| 44 | 43 | exbii 1582 |
. . . . . . . . 9
|
| 45 | 37, 44 | bitri 240 |
. . . . . . . 8
|
| 46 | breq1 4643 |
. . . . . . . . 9
| |
| 47 | 38, 46 | ceqsexv 2895 |
. . . . . . . 8
|
| 48 | 45, 47 | bitri 240 |
. . . . . . 7
|
| 49 | brco 4884 |
. . . . . . . . 9
| |
| 50 | 38, 39 | opbr2nd 5503 |
. . . . . . . . . . . 12
|
| 51 | eqcom 2355 |
. . . . . . . . . . . 12
| |
| 52 | 50, 51 | bitri 240 |
. . . . . . . . . . 11
|
| 53 | 52 | anbi1i 676 |
. . . . . . . . . 10
|
| 54 | 53 | exbii 1582 |
. . . . . . . . 9
|
| 55 | 49, 54 | bitri 240 |
. . . . . . . 8
|
| 56 | breq1 4643 |
. . . . . . . . 9
| |
| 57 | 39, 56 | ceqsexv 2895 |
. . . . . . . 8
|
| 58 | 55, 57 | bitri 240 |
. . . . . . 7
|
| 59 | 48, 58 | anbi12i 678 |
. . . . . 6
|
| 60 | 36, 59 | bitri 240 |
. . . . 5
|
| 61 | 27, 32, 60 | vtocl2g 2919 |
. . . 4
|
| 62 | 16, 22, 61 | vtocl2g 2919 |
. . 3
|
| 63 | 62 | imp 418 |
. 2
|
| 64 | 5, 10, 63 | pm5.21nii 342 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-co 4727 df-cnv 4786 df-2nd 4798 df-txp 5737 df-pprod 5739 |
| This theorem is referenced by: dmfrec 6317 fnfreclem2 6319 fnfreclem3 6320 frecsuc 6323 |
| Copyright terms: Public domain | W3C validator |