NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pprodeq2 GIF version

Theorem pprodeq2 5836
Description: Equality theorem for parallel product. (Contributed by Scott Fenton, 31-Jul-2019.)
Assertion
Ref Expression
pprodeq2 (A = BPProd (C, A) = PProd (C, B))

Proof of Theorem pprodeq2
StepHypRef Expression
1 coeq1 4875 . . 3 (A = B → (A 2nd ) = (B 2nd ))
2 txpeq2 5781 . . 3 ((A 2nd ) = (B 2nd ) → ((C 1st ) ⊗ (A 2nd )) = ((C 1st ) ⊗ (B 2nd )))
31, 2syl 15 . 2 (A = B → ((C 1st ) ⊗ (A 2nd )) = ((C 1st ) ⊗ (B 2nd )))
4 df-pprod 5739 . 2 PProd (C, A) = ((C 1st ) ⊗ (A 2nd ))
5 df-pprod 5739 . 2 PProd (C, B) = ((C 1st ) ⊗ (B 2nd ))
63, 4, 53eqtr4g 2410 1 (A = BPProd (C, A) = PProd (C, B))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  1st c1st 4718   ccom 4722  2nd c2nd 4784  ctxp 5736   PProd cpprod 5738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-opab 4624  df-br 4641  df-co 4727  df-txp 5737  df-pprod 5739
This theorem is referenced by:  freceq12  6312
  Copyright terms: Public domain W3C validator