NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pwtp Unicode version

Theorem pwtp 3885
Description: The power set of an unordered triple. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
pwtp

Proof of Theorem pwtp
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 vex 2863 . . . 4
21elpw 3729 . . 3
3 elun 3221 . . . . . 6
41elpr 3752 . . . . . . 7
51elpr 3752 . . . . . . 7
64, 5orbi12i 507 . . . . . 6
73, 6bitri 240 . . . . 5
8 elun 3221 . . . . . 6
91elpr 3752 . . . . . . 7
101elpr 3752 . . . . . . 7
119, 10orbi12i 507 . . . . . 6
128, 11bitri 240 . . . . 5
137, 12orbi12i 507 . . . 4
14 elun 3221 . . . 4
15 sstp 3871 . . . 4
1613, 14, 153bitr4ri 269 . . 3
172, 16bitri 240 . 2
1817eqriv 2350 1
Colors of variables: wff setvar class
Syntax hints:   wo 357   wceq 1642   wcel 1710   cun 3208   wss 3258  c0 3551  cpw 3723  csn 3738  cpr 3739  ctp 3740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pr 3743  df-tp 3744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator