Step | Hyp | Ref
| Expression |
1 | | vex 2863 |
. . . 4
⊢ x ∈
V |
2 | 1 | elpw 3729 |
. . 3
⊢ (x ∈ ℘{A, B, C} ↔
x ⊆
{A, B,
C}) |
3 | | elun 3221 |
. . . . . 6
⊢ (x ∈ ({∅, {A}} ∪
{{B}, {A, B}}) ↔
(x ∈
{∅, {A}}
∨ x ∈ {{B},
{A, B}})) |
4 | 1 | elpr 3752 |
. . . . . . 7
⊢ (x ∈ {∅, {A}} ↔
(x = ∅
∨ x =
{A})) |
5 | 1 | elpr 3752 |
. . . . . . 7
⊢ (x ∈ {{B}, {A, B}} ↔ (x =
{B} ∨
x = {A,
B})) |
6 | 4, 5 | orbi12i 507 |
. . . . . 6
⊢ ((x ∈ {∅, {A}} ∨ x ∈ {{B},
{A, B}}) ↔ ((x
= ∅ ∨
x = {A}) ∨ (x = {B} ∨ x = {A, B}))) |
7 | 3, 6 | bitri 240 |
. . . . 5
⊢ (x ∈ ({∅, {A}} ∪
{{B}, {A, B}}) ↔
((x = ∅
∨ x =
{A}) ∨
(x = {B} ∨ x = {A, B}))) |
8 | | elun 3221 |
. . . . . 6
⊢ (x ∈ ({{C}, {A, C}} ∪ {{B,
C}, {A,
B, C}})
↔ (x ∈ {{C},
{A, C}}
∨ x ∈ {{B, C}, {A, B, C}})) |
9 | 1 | elpr 3752 |
. . . . . . 7
⊢ (x ∈ {{C}, {A, C}} ↔ (x =
{C} ∨
x = {A,
C})) |
10 | 1 | elpr 3752 |
. . . . . . 7
⊢ (x ∈ {{B, C}, {A, B, C}} ↔ (x =
{B, C}
∨ x =
{A, B,
C})) |
11 | 9, 10 | orbi12i 507 |
. . . . . 6
⊢ ((x ∈ {{C}, {A, C}} ∨ x ∈ {{B, C}, {A, B, C}}) ↔ ((x
= {C} ∨
x = {A,
C}) ∨
(x = {B, C} ∨ x = {A, B, C}))) |
12 | 8, 11 | bitri 240 |
. . . . 5
⊢ (x ∈ ({{C}, {A, C}} ∪ {{B,
C}, {A,
B, C}})
↔ ((x = {C} ∨ x = {A, C}) ∨ (x = {B, C} ∨ x = {A, B, C}))) |
13 | 7, 12 | orbi12i 507 |
. . . 4
⊢ ((x ∈ ({∅, {A}} ∪
{{B}, {A, B}}) ∨ x ∈ ({{C},
{A, C}}
∪ {{B, C}, {A, B, C}})) ↔
(((x = ∅
∨ x =
{A}) ∨
(x = {B} ∨ x = {A, B})) ∨ ((x = {C} ∨ x = {A, C}) ∨ (x = {B, C} ∨ x = {A, B, C})))) |
14 | | elun 3221 |
. . . 4
⊢ (x ∈ (({∅, {A}} ∪
{{B}, {A, B}}) ∪
({{C}, {A, C}} ∪
{{B, C}, {A, B, C}})) ↔
(x ∈
({∅, {A}} ∪ {{B},
{A, B}}) ∨ x ∈ ({{C}, {A, C}} ∪ {{B,
C}, {A,
B, C}}))) |
15 | | sstp 3871 |
. . . 4
⊢ (x ⊆ {A, B, C} ↔ (((x =
∅ ∨
x = {A}) ∨ (x = {B} ∨ x = {A, B})) ∨ ((x =
{C} ∨
x = {A,
C}) ∨
(x = {B, C} ∨ x = {A, B, C})))) |
16 | 13, 14, 15 | 3bitr4ri 269 |
. . 3
⊢ (x ⊆ {A, B, C} ↔ x
∈ (({∅,
{A}} ∪ {{B}, {A, B}}) ∪ ({{C}, {A, C}} ∪ {{B,
C}, {A,
B, C}}))) |
17 | 2, 16 | bitri 240 |
. 2
⊢ (x ∈ ℘{A, B, C} ↔
x ∈
(({∅, {A}} ∪ {{B},
{A, B}}) ∪ ({{C}, {A, C}} ∪ {{B,
C}, {A,
B, C}}))) |
18 | 17 | eqriv 2350 |
1
⊢ ℘{A, B, C} = (({∅, {A}} ∪
{{B}, {A, B}}) ∪
({{C}, {A, C}} ∪
{{B, C}, {A, B, C}})) |