New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > reu6i | GIF version |
Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
reu6i | ⊢ ((B ∈ A ∧ ∀x ∈ A (φ ↔ x = B)) → ∃!x ∈ A φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2362 | . . . . 5 ⊢ (y = B → (x = y ↔ x = B)) | |
2 | 1 | bibi2d 309 | . . . 4 ⊢ (y = B → ((φ ↔ x = y) ↔ (φ ↔ x = B))) |
3 | 2 | ralbidv 2635 | . . 3 ⊢ (y = B → (∀x ∈ A (φ ↔ x = y) ↔ ∀x ∈ A (φ ↔ x = B))) |
4 | 3 | rspcev 2956 | . 2 ⊢ ((B ∈ A ∧ ∀x ∈ A (φ ↔ x = B)) → ∃y ∈ A ∀x ∈ A (φ ↔ x = y)) |
5 | reu6 3026 | . 2 ⊢ (∃!x ∈ A φ ↔ ∃y ∈ A ∀x ∈ A (φ ↔ x = y)) | |
6 | 4, 5 | sylibr 203 | 1 ⊢ ((B ∈ A ∧ ∀x ∈ A (φ ↔ x = B)) → ∃!x ∈ A φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∀wral 2615 ∃wrex 2616 ∃!wreu 2617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-reu 2622 df-v 2862 |
This theorem is referenced by: eqreu 3029 |
Copyright terms: Public domain | W3C validator |