NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  reu6i GIF version

Theorem reu6i 3028
Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
reu6i ((B A x A (φx = B)) → ∃!x A φ)
Distinct variable groups:   x,A   x,B
Allowed substitution hint:   φ(x)

Proof of Theorem reu6i
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2362 . . . . 5 (y = B → (x = yx = B))
21bibi2d 309 . . . 4 (y = B → ((φx = y) ↔ (φx = B)))
32ralbidv 2635 . . 3 (y = B → (x A (φx = y) ↔ x A (φx = B)))
43rspcev 2956 . 2 ((B A x A (φx = B)) → y A x A (φx = y))
5 reu6 3026 . 2 (∃!x A φy A x A (φx = y))
64, 5sylibr 203 1 ((B A x A (φx = B)) → ∃!x A φ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  wral 2615  wrex 2616  ∃!wreu 2617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-reu 2622  df-v 2862
This theorem is referenced by:  eqreu  3029
  Copyright terms: Public domain W3C validator