New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > reu7 | Unicode version |
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.) |
Ref | Expression |
---|---|
rmo4.1 |
Ref | Expression |
---|---|
reu7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu3 3027 | . 2 | |
2 | rmo4.1 | . . . . . . 7 | |
3 | eqeq1 2359 | . . . . . . . 8 | |
4 | eqcom 2355 | . . . . . . . 8 | |
5 | 3, 4 | syl6bb 252 | . . . . . . 7 |
6 | 2, 5 | imbi12d 311 | . . . . . 6 |
7 | 6 | cbvralv 2836 | . . . . 5 |
8 | 7 | rexbii 2640 | . . . 4 |
9 | eqeq1 2359 | . . . . . . 7 | |
10 | 9 | imbi2d 307 | . . . . . 6 |
11 | 10 | ralbidv 2635 | . . . . 5 |
12 | 11 | cbvrexv 2837 | . . . 4 |
13 | 8, 12 | bitri 240 | . . 3 |
14 | 13 | anbi2i 675 | . 2 |
15 | 1, 14 | bitri 240 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wceq 1642 wral 2615 wrex 2616 wreu 2617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |