Step | Hyp | Ref
| Expression |
1 | | reu3 3027 |
. 2
⊢ (∃!x ∈ A φ ↔ (∃x ∈ A φ ∧ ∃z ∈ A ∀x ∈ A (φ → x = z))) |
2 | | rmo4.1 |
. . . . . . 7
⊢ (x = y →
(φ ↔ ψ)) |
3 | | eqeq1 2359 |
. . . . . . . 8
⊢ (x = y →
(x = z
↔ y = z)) |
4 | | eqcom 2355 |
. . . . . . . 8
⊢ (y = z ↔
z = y) |
5 | 3, 4 | syl6bb 252 |
. . . . . . 7
⊢ (x = y →
(x = z
↔ z = y)) |
6 | 2, 5 | imbi12d 311 |
. . . . . 6
⊢ (x = y →
((φ → x = z) ↔
(ψ → z = y))) |
7 | 6 | cbvralv 2836 |
. . . . 5
⊢ (∀x ∈ A (φ → x = z) ↔
∀y
∈ A
(ψ → z = y)) |
8 | 7 | rexbii 2640 |
. . . 4
⊢ (∃z ∈ A ∀x ∈ A (φ → x = z) ↔
∃z ∈ A ∀y ∈ A (ψ → z = y)) |
9 | | eqeq1 2359 |
. . . . . . 7
⊢ (z = x →
(z = y
↔ x = y)) |
10 | 9 | imbi2d 307 |
. . . . . 6
⊢ (z = x →
((ψ → z = y) ↔
(ψ → x = y))) |
11 | 10 | ralbidv 2635 |
. . . . 5
⊢ (z = x →
(∀y
∈ A
(ψ → z = y) ↔
∀y
∈ A
(ψ → x = y))) |
12 | 11 | cbvrexv 2837 |
. . . 4
⊢ (∃z ∈ A ∀y ∈ A (ψ → z = y) ↔
∃x ∈ A ∀y ∈ A (ψ → x = y)) |
13 | 8, 12 | bitri 240 |
. . 3
⊢ (∃z ∈ A ∀x ∈ A (φ → x = z) ↔
∃x ∈ A ∀y ∈ A (ψ → x = y)) |
14 | 13 | anbi2i 675 |
. 2
⊢ ((∃x ∈ A φ ∧ ∃z ∈ A ∀x ∈ A (φ → x = z)) ↔
(∃x
∈ A φ ∧ ∃x ∈ A ∀y ∈ A (ψ → x = y))) |
15 | 1, 14 | bitri 240 |
1
⊢ (∃!x ∈ A φ ↔ (∃x ∈ A φ ∧ ∃x ∈ A ∀y ∈ A (ψ → x = y))) |