New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sfineq1 | Unicode version |
Description: Equality theorem for the finite S relationship. (Contributed by SF, 27-Jan-2015.) |
Ref | Expression |
---|---|
sfineq1 | Sfin Sfin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2413 | . . 3 Nn Nn | |
2 | eleq2 2414 | . . . . 5 1 1 | |
3 | 2 | anbi1d 685 | . . . 4 1 1 |
4 | 3 | exbidv 1626 | . . 3 1 1 |
5 | 1, 4 | 3anbi13d 1254 | . 2 Nn Nn 1 Nn Nn 1 |
6 | df-sfin 4446 | . 2 Sfin Nn Nn 1 | |
7 | df-sfin 4446 | . 2 Sfin Nn Nn 1 | |
8 | 5, 6, 7 | 3bitr4g 279 | 1 Sfin Sfin |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 w3a 934 wex 1541 wceq 1642 wcel 1710 cpw 3722 1 cpw1 4135 Nn cnnc 4373 Sfin wsfin 4438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 df-ex 1542 df-cleq 2346 df-clel 2349 df-sfin 4446 |
This theorem is referenced by: sfintfinlem1 4531 sfintfin 4532 spfinsfincl 4539 vfinspsslem1 4550 |
Copyright terms: Public domain | W3C validator |