NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sfineq1 Unicode version

Theorem sfineq1 4526
Description: Equality theorem for the finite S relationship. (Contributed by SF, 27-Jan-2015.)
Assertion
Ref Expression
sfineq1 Sfin Sfin

Proof of Theorem sfineq1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eleq1 2413 . . 3 Nn Nn
2 eleq2 2414 . . . . 5 1 1
32anbi1d 685 . . . 4 1 1
43exbidv 1626 . . 3 1 1
51, 43anbi13d 1254 . 2 Nn Nn 1 Nn Nn 1
6 df-sfin 4446 . 2 Sfin Nn Nn 1
7 df-sfin 4446 . 2 Sfin Nn Nn 1
85, 6, 73bitr4g 279 1 Sfin Sfin
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   w3a 934  wex 1541   wceq 1642   wcel 1710  cpw 3722  1 cpw1 4135   Nn cnnc 4373   Sfin wsfin 4438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-ex 1542  df-cleq 2346  df-clel 2349  df-sfin 4446
This theorem is referenced by:  sfintfinlem1  4531  sfintfin  4532  spfinsfincl  4539  vfinspsslem1  4550
  Copyright terms: Public domain W3C validator