| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > sfineq2 | Unicode version | ||
| Description: Equality theorem for the finite S relationship. (Contributed by SF, 27-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| sfineq2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1 2413 | 
. . 3
 | |
| 2 | eleq2 2414 | 
. . . . 5
 | |
| 3 | 2 | anbi2d 684 | 
. . . 4
 | 
| 4 | 3 | exbidv 1626 | 
. . 3
 | 
| 5 | 1, 4 | 3anbi23d 1255 | 
. 2
 | 
| 6 | df-sfin 4447 | 
. 2
 | |
| 7 | df-sfin 4447 | 
. 2
 | |
| 8 | 5, 6, 7 | 3bitr4g 279 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 df-ex 1542 df-cleq 2346 df-clel 2349 df-sfin 4447 | 
| This theorem is referenced by: sfintfinlem1 4532 sfintfin 4533 spfinsfincl 4540 t1csfin1c 4546 vfinspss 4552 | 
| Copyright terms: Public domain | W3C validator |