New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sfineq2 | GIF version |
Description: Equality theorem for the finite S relationship. (Contributed by SF, 27-Jan-2015.) |
Ref | Expression |
---|---|
sfineq2 | ⊢ (A = B → ( Sfin (C, A) ↔ Sfin (C, B))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2413 | . . 3 ⊢ (A = B → (A ∈ Nn ↔ B ∈ Nn )) | |
2 | eleq2 2414 | . . . . 5 ⊢ (A = B → (℘y ∈ A ↔ ℘y ∈ B)) | |
3 | 2 | anbi2d 684 | . . . 4 ⊢ (A = B → ((℘1y ∈ C ∧ ℘y ∈ A) ↔ (℘1y ∈ C ∧ ℘y ∈ B))) |
4 | 3 | exbidv 1626 | . . 3 ⊢ (A = B → (∃y(℘1y ∈ C ∧ ℘y ∈ A) ↔ ∃y(℘1y ∈ C ∧ ℘y ∈ B))) |
5 | 1, 4 | 3anbi23d 1255 | . 2 ⊢ (A = B → ((C ∈ Nn ∧ A ∈ Nn ∧ ∃y(℘1y ∈ C ∧ ℘y ∈ A)) ↔ (C ∈ Nn ∧ B ∈ Nn ∧ ∃y(℘1y ∈ C ∧ ℘y ∈ B)))) |
6 | df-sfin 4446 | . 2 ⊢ ( Sfin (C, A) ↔ (C ∈ Nn ∧ A ∈ Nn ∧ ∃y(℘1y ∈ C ∧ ℘y ∈ A))) | |
7 | df-sfin 4446 | . 2 ⊢ ( Sfin (C, B) ↔ (C ∈ Nn ∧ B ∈ Nn ∧ ∃y(℘1y ∈ C ∧ ℘y ∈ B))) | |
8 | 5, 6, 7 | 3bitr4g 279 | 1 ⊢ (A = B → ( Sfin (C, A) ↔ Sfin (C, B))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ℘cpw 3722 ℘1cpw1 4135 Nn cnnc 4373 Sfin wsfin 4438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 df-ex 1542 df-cleq 2346 df-clel 2349 df-sfin 4446 |
This theorem is referenced by: sfintfinlem1 4531 sfintfin 4532 spfinsfincl 4539 t1csfin1c 4545 vfinspss 4551 |
Copyright terms: Public domain | W3C validator |