Proof of Theorem sstp
Step | Hyp | Ref
| Expression |
1 | | df-tp 3744 |
. . 3
⊢ {B, C, D} = ({B,
C} ∪ {D}) |
2 | 1 | sseq2i 3297 |
. 2
⊢ (A ⊆ {B, C, D} ↔ A
⊆ ({B,
C} ∪ {D})) |
3 | | 0ss 3580 |
. . 3
⊢ ∅ ⊆ A |
4 | 3 | biantrur 492 |
. 2
⊢ (A ⊆ ({B, C} ∪
{D}) ↔ (∅ ⊆ A ∧ A ⊆ ({B, C} ∪
{D}))) |
5 | | ssunsn2 3866 |
. . 3
⊢ ((∅ ⊆ A ∧ A ⊆ ({B, C} ∪
{D})) ↔ ((∅ ⊆ A ∧ A ⊆ {B, C}) ∨ ((∅ ∪
{D}) ⊆
A ∧
A ⊆
({B, C}
∪ {D})))) |
6 | 3 | biantrur 492 |
. . . . 5
⊢ (A ⊆ {B, C} ↔
(∅ ⊆
A ∧
A ⊆
{B, C})) |
7 | | sspr 3870 |
. . . . 5
⊢ (A ⊆ {B, C} ↔
((A = ∅
∨ A =
{B}) ∨
(A = {C} ∨ A = {B, C}))) |
8 | 6, 7 | bitr3i 242 |
. . . 4
⊢ ((∅ ⊆ A ∧ A ⊆ {B, C}) ↔
((A = ∅
∨ A =
{B}) ∨
(A = {C} ∨ A = {B, C}))) |
9 | | uncom 3409 |
. . . . . . . 8
⊢ (∅ ∪ {D}) =
({D} ∪ ∅) |
10 | | un0 3576 |
. . . . . . . 8
⊢ ({D} ∪ ∅) =
{D} |
11 | 9, 10 | eqtri 2373 |
. . . . . . 7
⊢ (∅ ∪ {D}) =
{D} |
12 | 11 | sseq1i 3296 |
. . . . . 6
⊢ ((∅ ∪ {D})
⊆ A
↔ {D} ⊆ A) |
13 | | uncom 3409 |
. . . . . . 7
⊢ ({B, C} ∪
{D}) = ({D} ∪ {B,
C}) |
14 | 13 | sseq2i 3297 |
. . . . . 6
⊢ (A ⊆ ({B, C} ∪
{D}) ↔ A ⊆ ({D} ∪ {B,
C})) |
15 | 12, 14 | anbi12i 678 |
. . . . 5
⊢ (((∅ ∪ {D})
⊆ A
∧ A ⊆ ({B,
C} ∪ {D})) ↔ ({D}
⊆ A
∧ A ⊆ ({D} ∪
{B, C}))) |
16 | | ssunpr 3869 |
. . . . 5
⊢ (({D} ⊆ A ∧ A ⊆ ({D} ∪ {B,
C})) ↔ ((A = {D} ∨ A = ({D} ∪ {B}))
∨ (A =
({D} ∪ {C}) ∨ A = ({D} ∪
{B, C})))) |
17 | | uncom 3409 |
. . . . . . . . 9
⊢ ({D} ∪ {B}) =
({B} ∪ {D}) |
18 | | df-pr 3743 |
. . . . . . . . 9
⊢ {B, D} =
({B} ∪ {D}) |
19 | 17, 18 | eqtr4i 2376 |
. . . . . . . 8
⊢ ({D} ∪ {B}) =
{B, D} |
20 | 19 | eqeq2i 2363 |
. . . . . . 7
⊢ (A = ({D} ∪
{B}) ↔ A = {B, D}) |
21 | 20 | orbi2i 505 |
. . . . . 6
⊢ ((A = {D} ∨ A = ({D} ∪ {B}))
↔ (A = {D} ∨ A = {B, D})) |
22 | | uncom 3409 |
. . . . . . . . 9
⊢ ({D} ∪ {C}) =
({C} ∪ {D}) |
23 | | df-pr 3743 |
. . . . . . . . 9
⊢ {C, D} =
({C} ∪ {D}) |
24 | 22, 23 | eqtr4i 2376 |
. . . . . . . 8
⊢ ({D} ∪ {C}) =
{C, D} |
25 | 24 | eqeq2i 2363 |
. . . . . . 7
⊢ (A = ({D} ∪
{C}) ↔ A = {C, D}) |
26 | 1, 13 | eqtr2i 2374 |
. . . . . . . 8
⊢ ({D} ∪ {B,
C}) = {B, C, D} |
27 | 26 | eqeq2i 2363 |
. . . . . . 7
⊢ (A = ({D} ∪
{B, C})
↔ A = {B, C, D}) |
28 | 25, 27 | orbi12i 507 |
. . . . . 6
⊢ ((A = ({D} ∪
{C}) ∨
A = ({D} ∪ {B,
C})) ↔ (A = {C, D} ∨ A = {B, C, D})) |
29 | 21, 28 | orbi12i 507 |
. . . . 5
⊢ (((A = {D} ∨ A = ({D} ∪ {B}))
∨ (A =
({D} ∪ {C}) ∨ A = ({D} ∪
{B, C}))) ↔ ((A
= {D} ∨
A = {B,
D}) ∨
(A = {C, D} ∨ A = {B, C, D}))) |
30 | 15, 16, 29 | 3bitri 262 |
. . . 4
⊢ (((∅ ∪ {D})
⊆ A
∧ A ⊆ ({B,
C} ∪ {D})) ↔ ((A
= {D} ∨
A = {B,
D}) ∨
(A = {C, D} ∨ A = {B, C, D}))) |
31 | 8, 30 | orbi12i 507 |
. . 3
⊢ (((∅ ⊆ A ∧ A ⊆ {B, C}) ∨ ((∅ ∪
{D}) ⊆
A ∧
A ⊆
({B, C}
∪ {D}))) ↔ (((A = ∅ ∨ A = {B}) ∨ (A = {C} ∨ A = {B, C})) ∨ ((A =
{D} ∨
A = {B,
D}) ∨
(A = {C, D} ∨ A = {B, C, D})))) |
32 | 5, 31 | bitri 240 |
. 2
⊢ ((∅ ⊆ A ∧ A ⊆ ({B, C} ∪
{D})) ↔ (((A = ∅ ∨ A = {B}) ∨ (A = {C} ∨ A = {B, C})) ∨ ((A =
{D} ∨
A = {B,
D}) ∨
(A = {C, D} ∨ A = {B, C, D})))) |
33 | 2, 4, 32 | 3bitri 262 |
1
⊢ (A ⊆ {B, C, D} ↔ (((A =
∅ ∨
A = {B}) ∨ (A = {C} ∨ A = {B, C})) ∨ ((A =
{D} ∨
A = {B,
D}) ∨
(A = {C, D} ∨ A = {B, C, D})))) |