NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssunsn2 Unicode version

Theorem ssunsn2 3866
Description: The property of being sandwiched between two sets naturally splits under union with a singleton. This is the induction hypothesis for the determination of large powersets such as pwtp 3885. (Contributed by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
ssunsn2

Proof of Theorem ssunsn2
StepHypRef Expression
1 snssi 3853 . . . . 5
2 unss 3438 . . . . . . 7
32bicomi 193 . . . . . 6
43rbaibr 874 . . . . 5
51, 4syl 15 . . . 4
65anbi1d 685 . . 3
72biimpi 186 . . . . . . 7
87expcom 424 . . . . . 6
91, 8syl 15 . . . . 5
10 ssun3 3429 . . . . . 6
1110a1i 10 . . . . 5
129, 11anim12d 546 . . . 4
13 pm4.72 846 . . . 4
1412, 13sylib 188 . . 3
156, 14bitrd 244 . 2
16 disjsn 3787 . . . . . . 7
17 disj3 3596 . . . . . . 7
1816, 17bitr3i 242 . . . . . 6
19 sseq1 3293 . . . . . 6
2018, 19sylbi 187 . . . . 5
21 uncom 3409 . . . . . . 7
2221sseq2i 3297 . . . . . 6
23 ssundif 3634 . . . . . 6
2422, 23bitr3i 242 . . . . 5
2520, 24syl6rbbr 255 . . . 4
2625anbi2d 684 . . 3
273simplbi 446 . . . . . . 7
2827a1i 10 . . . . . 6
2925biimpd 198 . . . . . 6
3028, 29anim12d 546 . . . . 5
31 pm4.72 846 . . . . 5
3230, 31sylib 188 . . . 4
33 orcom 376 . . . 4
3432, 33syl6bb 252 . . 3
3526, 34bitrd 244 . 2
3615, 35pm2.61i 156 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wb 176   wo 357   wa 358   wceq 1642   wcel 1710   cdif 3207   cun 3208   cin 3209   wss 3258  c0 3551  csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742
This theorem is referenced by:  ssunsn  3867  ssunpr  3869  sstp  3871
  Copyright terms: Public domain W3C validator