| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > ssunsn2 | Unicode version | ||
| Description: The property of being sandwiched between two sets naturally splits under union with a singleton. This is the induction hypothesis for the determination of large powersets such as pwtp 3885. (Contributed by Mario Carneiro, 2-Jul-2016.) | 
| Ref | Expression | 
|---|---|
| ssunsn2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | snssi 3853 | 
. . . . 5
 | |
| 2 | unss 3438 | 
. . . . . . 7
 | |
| 3 | 2 | bicomi 193 | 
. . . . . 6
 | 
| 4 | 3 | rbaibr 874 | 
. . . . 5
 | 
| 5 | 1, 4 | syl 15 | 
. . . 4
 | 
| 6 | 5 | anbi1d 685 | 
. . 3
 | 
| 7 | 2 | biimpi 186 | 
. . . . . . 7
 | 
| 8 | 7 | expcom 424 | 
. . . . . 6
 | 
| 9 | 1, 8 | syl 15 | 
. . . . 5
 | 
| 10 | ssun3 3429 | 
. . . . . 6
 | |
| 11 | 10 | a1i 10 | 
. . . . 5
 | 
| 12 | 9, 11 | anim12d 546 | 
. . . 4
 | 
| 13 | pm4.72 846 | 
. . . 4
 | |
| 14 | 12, 13 | sylib 188 | 
. . 3
 | 
| 15 | 6, 14 | bitrd 244 | 
. 2
 | 
| 16 | disjsn 3787 | 
. . . . . . 7
 | |
| 17 | disj3 3596 | 
. . . . . . 7
 | |
| 18 | 16, 17 | bitr3i 242 | 
. . . . . 6
 | 
| 19 | sseq1 3293 | 
. . . . . 6
 | |
| 20 | 18, 19 | sylbi 187 | 
. . . . 5
 | 
| 21 | uncom 3409 | 
. . . . . . 7
 | |
| 22 | 21 | sseq2i 3297 | 
. . . . . 6
 | 
| 23 | ssundif 3634 | 
. . . . . 6
 | |
| 24 | 22, 23 | bitr3i 242 | 
. . . . 5
 | 
| 25 | 20, 24 | syl6rbbr 255 | 
. . . 4
 | 
| 26 | 25 | anbi2d 684 | 
. . 3
 | 
| 27 | 3 | simplbi 446 | 
. . . . . . 7
 | 
| 28 | 27 | a1i 10 | 
. . . . . 6
 | 
| 29 | 25 | biimpd 198 | 
. . . . . 6
 | 
| 30 | 28, 29 | anim12d 546 | 
. . . . 5
 | 
| 31 | pm4.72 846 | 
. . . . 5
 | |
| 32 | 30, 31 | sylib 188 | 
. . . 4
 | 
| 33 | orcom 376 | 
. . . 4
 | |
| 34 | 32, 33 | syl6bb 252 | 
. . 3
 | 
| 35 | 26, 34 | bitrd 244 | 
. 2
 | 
| 36 | 15, 35 | pm2.61i 156 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 | 
| This theorem is referenced by: ssunsn 3867 ssunpr 3869 sstp 3871 | 
| Copyright terms: Public domain | W3C validator |