New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssunsn2 | Unicode version |
Description: The property of being sandwiched between two sets naturally splits under union with a singleton. This is the induction hypothesis for the determination of large powersets such as pwtp 3885. (Contributed by Mario Carneiro, 2-Jul-2016.) |
Ref | Expression |
---|---|
ssunsn2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 3853 | . . . . 5 | |
2 | unss 3438 | . . . . . . 7 | |
3 | 2 | bicomi 193 | . . . . . 6 |
4 | 3 | rbaibr 874 | . . . . 5 |
5 | 1, 4 | syl 15 | . . . 4 |
6 | 5 | anbi1d 685 | . . 3 |
7 | 2 | biimpi 186 | . . . . . . 7 |
8 | 7 | expcom 424 | . . . . . 6 |
9 | 1, 8 | syl 15 | . . . . 5 |
10 | ssun3 3429 | . . . . . 6 | |
11 | 10 | a1i 10 | . . . . 5 |
12 | 9, 11 | anim12d 546 | . . . 4 |
13 | pm4.72 846 | . . . 4 | |
14 | 12, 13 | sylib 188 | . . 3 |
15 | 6, 14 | bitrd 244 | . 2 |
16 | disjsn 3787 | . . . . . . 7 | |
17 | disj3 3596 | . . . . . . 7 | |
18 | 16, 17 | bitr3i 242 | . . . . . 6 |
19 | sseq1 3293 | . . . . . 6 | |
20 | 18, 19 | sylbi 187 | . . . . 5 |
21 | uncom 3409 | . . . . . . 7 | |
22 | 21 | sseq2i 3297 | . . . . . 6 |
23 | ssundif 3634 | . . . . . 6 | |
24 | 22, 23 | bitr3i 242 | . . . . 5 |
25 | 20, 24 | syl6rbbr 255 | . . . 4 |
26 | 25 | anbi2d 684 | . . 3 |
27 | 3 | simplbi 446 | . . . . . . 7 |
28 | 27 | a1i 10 | . . . . . 6 |
29 | 25 | biimpd 198 | . . . . . 6 |
30 | 28, 29 | anim12d 546 | . . . . 5 |
31 | pm4.72 846 | . . . . 5 | |
32 | 30, 31 | sylib 188 | . . . 4 |
33 | orcom 376 | . . . 4 | |
34 | 32, 33 | syl6bb 252 | . . 3 |
35 | 26, 34 | bitrd 244 | . 2 |
36 | 15, 35 | pm2.61i 156 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wo 357 wa 358 wceq 1642 wcel 1710 cdif 3207 cun 3208 cin 3209 wss 3258 c0 3551 csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 |
This theorem is referenced by: ssunsn 3867 ssunpr 3869 sstp 3871 |
Copyright terms: Public domain | W3C validator |