NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sucevenodd Unicode version

Theorem sucevenodd 4511
Description: The successor of an even natural is odd. (Contributed by SF, 20-Jan-2015.)
Assertion
Ref Expression
sucevenodd Evenfin 1c 1c Oddfin

Proof of Theorem sucevenodd
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2359 . . . . . . . 8
21rexbidv 2636 . . . . . . 7 Nn Nn
3 neeq1 2525 . . . . . . 7
42, 3anbi12d 691 . . . . . 6 Nn Nn
5 df-evenfin 4445 . . . . . 6 Evenfin Nn
64, 5elab2g 2988 . . . . 5 Evenfin Evenfin Nn
76ibi 232 . . . 4 Evenfin Nn
8 addceq1 4384 . . . . . 6 1c 1c
98reximi 2722 . . . . 5 Nn Nn 1c 1c
109adantr 451 . . . 4 Nn Nn 1c 1c
117, 10syl 15 . . 3 Evenfin Nn 1c 1c
1211anim1i 551 . 2 Evenfin 1c Nn 1c 1c 1c
13 1cex 4143 . . . . 5 1c
14 addcexg 4394 . . . . 5 Evenfin 1c 1c
1513, 14mpan2 652 . . . 4 Evenfin 1c
16 eqeq1 2359 . . . . . . 7 1c 1c 1c 1c
1716rexbidv 2636 . . . . . 6 1c Nn 1c Nn 1c 1c
18 neeq1 2525 . . . . . 6 1c 1c
1917, 18anbi12d 691 . . . . 5 1c Nn 1c Nn 1c 1c 1c
20 df-oddfin 4446 . . . . 5 Oddfin Nn 1c
2119, 20elab2g 2988 . . . 4 1c 1c Oddfin Nn 1c 1c 1c
2215, 21syl 15 . . 3 Evenfin 1c Oddfin Nn 1c 1c 1c
2322adantr 451 . 2 Evenfin 1c 1c Oddfin Nn 1c 1c 1c
2412, 23mpbird 223 1 Evenfin 1c 1c Oddfin
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   wceq 1642   wcel 1710   wne 2517  wrex 2616  cvv 2860  c0 3551  1cc1c 4135   Nn cnnc 4374   cplc 4376   Evenfin cevenfin 4437   Oddfin coddfin 4438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pr 3743  df-opk 4059  df-1c 4137  df-pw1 4138  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-p6 4192  df-sik 4193  df-ssetk 4194  df-addc 4379  df-evenfin 4445  df-oddfin 4446
This theorem is referenced by:  evenoddnnnul  4515  vinf  4556
  Copyright terms: Public domain W3C validator