| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > sucevenodd | Unicode version | ||
| Description: The successor of an even natural is odd. (Contributed by SF, 20-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| sucevenodd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqeq1 2359 | 
. . . . . . . 8
 | |
| 2 | 1 | rexbidv 2636 | 
. . . . . . 7
 | 
| 3 | neeq1 2525 | 
. . . . . . 7
 | |
| 4 | 2, 3 | anbi12d 691 | 
. . . . . 6
 | 
| 5 | df-evenfin 4445 | 
. . . . . 6
 | |
| 6 | 4, 5 | elab2g 2988 | 
. . . . 5
 | 
| 7 | 6 | ibi 232 | 
. . . 4
 | 
| 8 | addceq1 4384 | 
. . . . . 6
 | |
| 9 | 8 | reximi 2722 | 
. . . . 5
 | 
| 10 | 9 | adantr 451 | 
. . . 4
 | 
| 11 | 7, 10 | syl 15 | 
. . 3
 | 
| 12 | 11 | anim1i 551 | 
. 2
 | 
| 13 | 1cex 4143 | 
. . . . 5
 | |
| 14 | addcexg 4394 | 
. . . . 5
 | |
| 15 | 13, 14 | mpan2 652 | 
. . . 4
 | 
| 16 | eqeq1 2359 | 
. . . . . . 7
 | |
| 17 | 16 | rexbidv 2636 | 
. . . . . 6
 | 
| 18 | neeq1 2525 | 
. . . . . 6
 | |
| 19 | 17, 18 | anbi12d 691 | 
. . . . 5
 | 
| 20 | df-oddfin 4446 | 
. . . . 5
 | |
| 21 | 19, 20 | elab2g 2988 | 
. . . 4
 | 
| 22 | 15, 21 | syl 15 | 
. . 3
 | 
| 23 | 22 | adantr 451 | 
. 2
 | 
| 24 | 12, 23 | mpbird 223 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-pw1 4138 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-p6 4192 df-sik 4193 df-ssetk 4194 df-addc 4379 df-evenfin 4445 df-oddfin 4446 | 
| This theorem is referenced by: evenoddnnnul 4515 vinf 4556 | 
| Copyright terms: Public domain | W3C validator |