New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sucevenodd | Unicode version |
Description: The successor of an even natural is odd. (Contributed by SF, 20-Jan-2015.) |
Ref | Expression |
---|---|
sucevenodd | Evenfin 1c 1c Oddfin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2359 | . . . . . . . 8 | |
2 | 1 | rexbidv 2636 | . . . . . . 7 Nn Nn |
3 | neeq1 2525 | . . . . . . 7 | |
4 | 2, 3 | anbi12d 691 | . . . . . 6 Nn Nn |
5 | df-evenfin 4445 | . . . . . 6 Evenfin Nn | |
6 | 4, 5 | elab2g 2988 | . . . . 5 Evenfin Evenfin Nn |
7 | 6 | ibi 232 | . . . 4 Evenfin Nn |
8 | addceq1 4384 | . . . . . 6 1c 1c | |
9 | 8 | reximi 2722 | . . . . 5 Nn Nn 1c 1c |
10 | 9 | adantr 451 | . . . 4 Nn Nn 1c 1c |
11 | 7, 10 | syl 15 | . . 3 Evenfin Nn 1c 1c |
12 | 11 | anim1i 551 | . 2 Evenfin 1c Nn 1c 1c 1c |
13 | 1cex 4143 | . . . . 5 1c | |
14 | addcexg 4394 | . . . . 5 Evenfin 1c 1c | |
15 | 13, 14 | mpan2 652 | . . . 4 Evenfin 1c |
16 | eqeq1 2359 | . . . . . . 7 1c 1c 1c 1c | |
17 | 16 | rexbidv 2636 | . . . . . 6 1c Nn 1c Nn 1c 1c |
18 | neeq1 2525 | . . . . . 6 1c 1c | |
19 | 17, 18 | anbi12d 691 | . . . . 5 1c Nn 1c Nn 1c 1c 1c |
20 | df-oddfin 4446 | . . . . 5 Oddfin Nn 1c | |
21 | 19, 20 | elab2g 2988 | . . . 4 1c 1c Oddfin Nn 1c 1c 1c |
22 | 15, 21 | syl 15 | . . 3 Evenfin 1c Oddfin Nn 1c 1c 1c |
23 | 22 | adantr 451 | . 2 Evenfin 1c 1c Oddfin Nn 1c 1c 1c |
24 | 12, 23 | mpbird 223 | 1 Evenfin 1c 1c Oddfin |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wceq 1642 wcel 1710 wne 2517 wrex 2616 cvv 2860 c0 3551 1cc1c 4135 Nn cnnc 4374 cplc 4376 Evenfin cevenfin 4437 Oddfin coddfin 4438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-pw1 4138 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-p6 4192 df-sik 4193 df-ssetk 4194 df-addc 4379 df-evenfin 4445 df-oddfin 4446 |
This theorem is referenced by: evenoddnnnul 4515 vinf 4556 |
Copyright terms: Public domain | W3C validator |