NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl2anb Unicode version

Theorem syl2anb 465
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.)
Hypotheses
Ref Expression
syl2anb.1
syl2anb.2
syl2anb.3
Assertion
Ref Expression
syl2anb

Proof of Theorem syl2anb
StepHypRef Expression
1 syl2anb.2 . 2
2 syl2anb.1 . . 3
3 syl2anb.3 . . 3
42, 3sylanb 458 . 2
51, 4sylan2b 461 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  sylancb  646  2eu6  2289  reupick3  3541  difprsnss  3847  ncfinraise  4482  ncfinlower  4484  sfinltfin  4536  fnun  5190  f1oun  5305  eqfunfv  5398  swapf1o  5512  fnfullfunlem2  5858  fvfullfunlem3  5864  xpassen  6058  enprmaplem3  6079  ncaddccl  6145  peano4nc  6151  cenc  6182
  Copyright terms: Public domain W3C validator