New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ncaddccl | Unicode version |
Description: The cardinals are closed under cardinal addition. Theorem XI.2.10 of [Rosser] p. 374. (Contributed by SF, 24-Feb-2015.) |
Ref | Expression |
---|---|
ncaddccl | NC NC NC |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elncs 6120 | . 2 NC Nc | |
2 | elncs 6120 | . 2 NC Nc | |
3 | eeanv 1913 | . . 3 Nc Nc Nc Nc | |
4 | vex 2863 | . . . . . . . . 9 | |
5 | 0ex 4111 | . . . . . . . . . 10 | |
6 | 5 | complex 4105 | . . . . . . . . 9 ∼ |
7 | 4, 6 | xpsnen 6050 | . . . . . . . 8 ∼ |
8 | snex 4112 | . . . . . . . . . 10 ∼ | |
9 | 4, 8 | xpex 5116 | . . . . . . . . 9 ∼ |
10 | 9 | eqnc 6128 | . . . . . . . 8 Nc ∼ Nc ∼ |
11 | 7, 10 | mpbir 200 | . . . . . . 7 Nc ∼ Nc |
12 | 11 | eqcomi 2357 | . . . . . 6 Nc Nc ∼ |
13 | eqtr 2370 | . . . . . 6 Nc Nc Nc ∼ Nc ∼ | |
14 | 12, 13 | mpan2 652 | . . . . 5 Nc Nc ∼ |
15 | vex 2863 | . . . . . . . . 9 | |
16 | 15, 5 | xpsnen 6050 | . . . . . . . 8 |
17 | snex 4112 | . . . . . . . . . 10 | |
18 | 15, 17 | xpex 5116 | . . . . . . . . 9 |
19 | 18 | eqnc 6128 | . . . . . . . 8 Nc Nc |
20 | 16, 19 | mpbir 200 | . . . . . . 7 Nc Nc |
21 | 20 | eqcomi 2357 | . . . . . 6 Nc Nc |
22 | eqtr 2370 | . . . . . 6 Nc Nc Nc Nc | |
23 | 21, 22 | mpan2 652 | . . . . 5 Nc Nc |
24 | addceq12 4386 | . . . . . 6 Nc ∼ Nc Nc ∼ Nc | |
25 | necompl 3545 | . . . . . . . . . . 11 ∼ | |
26 | 6, 25 | xpnedisj 5514 | . . . . . . . . . 10 ∼ |
27 | 9, 18 | ncdisjun 6137 | . . . . . . . . . 10 ∼ Nc ∼ Nc ∼ Nc |
28 | 26, 27 | ax-mp 5 | . . . . . . . . 9 Nc ∼ Nc ∼ Nc |
29 | 28 | eqcomi 2357 | . . . . . . . 8 Nc ∼ Nc Nc ∼ |
30 | 9, 18 | unex 4107 | . . . . . . . . 9 ∼ |
31 | nceq 6109 | . . . . . . . . . 10 ∼ Nc Nc ∼ | |
32 | 31 | eqeq2d 2364 | . . . . . . . . 9 ∼ Nc ∼ Nc Nc Nc ∼ Nc Nc ∼ |
33 | 30, 32 | spcev 2947 | . . . . . . . 8 Nc ∼ Nc Nc ∼ Nc ∼ Nc Nc |
34 | 29, 33 | ax-mp 5 | . . . . . . 7 Nc ∼ Nc Nc |
35 | elncs 6120 | . . . . . . 7 Nc ∼ Nc NC Nc ∼ Nc Nc | |
36 | 34, 35 | mpbir 200 | . . . . . 6 Nc ∼ Nc NC |
37 | 24, 36 | syl6eqel 2441 | . . . . 5 Nc ∼ Nc NC |
38 | 14, 23, 37 | syl2an 463 | . . . 4 Nc Nc NC |
39 | 38 | exlimivv 1635 | . . 3 Nc Nc NC |
40 | 3, 39 | sylbir 204 | . 2 Nc Nc NC |
41 | 1, 2, 40 | syl2anb 465 | 1 NC NC NC |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 wex 1541 wceq 1642 wcel 1710 ∼ ccompl 3206 cun 3208 cin 3209 c0 3551 csn 3738 cplc 4376 class class class wbr 4640 cxp 4771 cen 6029 NC cncs 6089 Nc cnc 6092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-2nd 4798 df-txp 5737 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-en 6030 df-ncs 6099 df-nc 6102 |
This theorem is referenced by: peano2nc 6146 tcdi 6165 ce0addcnnul 6180 addlecncs 6210 lectr 6212 leaddc1 6215 taddc 6230 tlecg 6231 letc 6232 nclenn 6250 addcdi 6251 addcdir 6252 addccan2nc 6266 lecadd2 6267 ncslesuc 6268 nchoicelem1 6290 |
Copyright terms: Public domain | W3C validator |