| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > cenc | Unicode version | ||
| Description: Cardinal exponentiation in terms of cardinality. Theorem XI.2.39 of [Rosser] p. 382. (Contributed by SF, 6-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| cenc.1 | 
 | 
| cenc.2 | 
 | 
| Ref | Expression | 
|---|---|
| cenc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elnc 6126 | 
. . . . . . . . 9
 | |
| 2 | enpw1 6063 | 
. . . . . . . . 9
 | |
| 3 | 1, 2 | bitr4i 243 | 
. . . . . . . 8
 | 
| 4 | elnc 6126 | 
. . . . . . . . 9
 | |
| 5 | enpw1 6063 | 
. . . . . . . . 9
 | |
| 6 | 4, 5 | bitr4i 243 | 
. . . . . . . 8
 | 
| 7 | enmap1 6075 | 
. . . . . . . . 9
 | |
| 8 | enmap2 6069 | 
. . . . . . . . 9
 | |
| 9 | entr 6039 | 
. . . . . . . . 9
 | |
| 10 | 7, 8, 9 | syl2an 463 | 
. . . . . . . 8
 | 
| 11 | 3, 6, 10 | syl2anb 465 | 
. . . . . . 7
 | 
| 12 | entr 6039 | 
. . . . . . . 8
 | |
| 13 | 12 | ancoms 439 | 
. . . . . . 7
 | 
| 14 | 11, 13 | sylan 457 | 
. . . . . 6
 | 
| 15 | 14 | 3impa 1146 | 
. . . . 5
 | 
| 16 | 15 | exlimivv 1635 | 
. . . 4
 | 
| 17 | cenc.1 | 
. . . . . . 7
 | |
| 18 | 17 | pw1ex 4304 | 
. . . . . 6
 | 
| 19 | 18 | ncelncsi 6122 | 
. . . . 5
 | 
| 20 | cenc.2 | 
. . . . . . 7
 | |
| 21 | 20 | pw1ex 4304 | 
. . . . . 6
 | 
| 22 | 21 | ncelncsi 6122 | 
. . . . 5
 | 
| 23 | elce 6176 | 
. . . . 5
 | |
| 24 | 19, 22, 23 | mp2an 653 | 
. . . 4
 | 
| 25 | elnc 6126 | 
. . . 4
 | |
| 26 | 16, 24, 25 | 3imtr4i 257 | 
. . 3
 | 
| 27 | 26 | ssriv 3278 | 
. 2
 | 
| 28 | 18 | ncid 6124 | 
. . . . 5
 | 
| 29 | 21 | ncid 6124 | 
. . . . 5
 | 
| 30 | pw1eq 4144 | 
. . . . . . . . 9
 | |
| 31 | 30 | eleq1d 2419 | 
. . . . . . . 8
 | 
| 32 | 31 | adantr 451 | 
. . . . . . 7
 | 
| 33 | pw1eq 4144 | 
. . . . . . . . 9
 | |
| 34 | 33 | eleq1d 2419 | 
. . . . . . . 8
 | 
| 35 | 34 | adantl 452 | 
. . . . . . 7
 | 
| 36 | oveq12 5533 | 
. . . . . . . 8
 | |
| 37 | 36 | breq2d 4652 | 
. . . . . . 7
 | 
| 38 | 32, 35, 37 | 3anbi123d 1252 | 
. . . . . 6
 | 
| 39 | 17, 20, 38 | spc2ev 2948 | 
. . . . 5
 | 
| 40 | 28, 29, 39 | mp3an12 1267 | 
. . . 4
 | 
| 41 | elce 6176 | 
. . . . 5
 | |
| 42 | 19, 22, 41 | mp2an 653 | 
. . . 4
 | 
| 43 | 40, 25, 42 | 3imtr4i 257 | 
. . 3
 | 
| 44 | 43 | ssriv 3278 | 
. 2
 | 
| 45 | 27, 44 | eqssi 3289 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-compose 5749 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-pw1fn 5767 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-map 6002 df-en 6030 df-ncs 6099 df-nc 6102 df-ce 6107 | 
| This theorem is referenced by: ce0nnulb 6183 ceclb 6184 ce0 6191 ce2 6193 | 
| Copyright terms: Public domain | W3C validator |