New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssrnres | Unicode version |
Description: Subset of the range of a restriction. (Contributed by set.mm contributors, 16-Jan-2006.) |
Ref | Expression |
---|---|
ssrnres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3288 | . 2 | |
2 | inss2 3477 | . . . . 5 | |
3 | rnss 4960 | . . . . 5 | |
4 | 2, 3 | ax-mp 5 | . . . 4 |
5 | rnxpss 5054 | . . . 4 | |
6 | 4, 5 | sstri 3282 | . . 3 |
7 | 6 | biantrur 492 | . 2 |
8 | ssv 3292 | . . . . . . . 8 | |
9 | xpss2 4858 | . . . . . . . 8 | |
10 | 8, 9 | ax-mp 5 | . . . . . . 7 |
11 | sslin 3482 | . . . . . . 7 | |
12 | 10, 11 | ax-mp 5 | . . . . . 6 |
13 | df-res 4789 | . . . . . 6 | |
14 | 12, 13 | sseqtr4i 3305 | . . . . 5 |
15 | rnss 4960 | . . . . 5 | |
16 | 14, 15 | ax-mp 5 | . . . 4 |
17 | sstr 3281 | . . . 4 | |
18 | 16, 17 | mpan2 652 | . . 3 |
19 | ssel 3268 | . . . . . . 7 | |
20 | elrn2 4898 | . . . . . . 7 | |
21 | 19, 20 | syl6ib 217 | . . . . . 6 |
22 | 21 | ancrd 537 | . . . . 5 |
23 | elrn2 4898 | . . . . . 6 | |
24 | elin 3220 | . . . . . . . 8 | |
25 | opelxp 4812 | . . . . . . . . 9 | |
26 | 25 | anbi2i 675 | . . . . . . . 8 |
27 | opelres 4951 | . . . . . . . . . 10 | |
28 | 27 | anbi1i 676 | . . . . . . . . 9 |
29 | anass 630 | . . . . . . . . 9 | |
30 | 28, 29 | bitr2i 241 | . . . . . . . 8 |
31 | 24, 26, 30 | 3bitri 262 | . . . . . . 7 |
32 | 31 | exbii 1582 | . . . . . 6 |
33 | 19.41v 1901 | . . . . . 6 | |
34 | 23, 32, 33 | 3bitri 262 | . . . . 5 |
35 | 22, 34 | syl6ibr 218 | . . . 4 |
36 | 35 | ssrdv 3279 | . . 3 |
37 | 18, 36 | impbii 180 | . 2 |
38 | 1, 7, 37 | 3bitr2ri 265 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 wex 1541 wceq 1642 wcel 1710 cvv 2860 cin 3209 wss 3258 cop 4562 cxp 4771 crn 4774 cres 4775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-ima 4728 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 |
This theorem is referenced by: rninxp 5061 |
Copyright terms: Public domain | W3C validator |