| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ralxpf | Unicode version | ||
| Description: Version of ralxp 4826 with bound-variable hypotheses. (Contributed by NM, 18-Aug-2006.) (Revised by set.mm contributors, 20-Dec-2008.) |
| Ref | Expression |
|---|---|
| ralxpf.1 |
|
| ralxpf.2 |
|
| ralxpf.3 |
|
| ralxpf.4 |
|
| Ref | Expression |
|---|---|
| ralxpf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralsv 2847 |
. 2
| |
| 2 | cbvralsv 2847 |
. . . 4
| |
| 3 | 2 | ralbii 2639 |
. . 3
|
| 4 | nfv 1619 |
. . . 4
| |
| 5 | nfcv 2490 |
. . . . 5
| |
| 6 | nfv 1619 |
. . . . . 6
| |
| 7 | 6 | nfs1 2044 |
. . . . 5
|
| 8 | 5, 7 | nfral 2668 |
. . . 4
|
| 9 | sbequ12 1919 |
. . . . 5
| |
| 10 | 9 | ralbidv 2635 |
. . . 4
|
| 11 | 4, 8, 10 | cbvral 2832 |
. . 3
|
| 12 | vex 2863 |
. . . . . 6
| |
| 13 | vex 2863 |
. . . . . 6
| |
| 14 | 12, 13 | eqvinop 4607 |
. . . . 5
|
| 15 | ralxpf.1 |
. . . . . . . 8
| |
| 16 | 15 | nfsb 2109 |
. . . . . . 7
|
| 17 | 7 | nfsb 2109 |
. . . . . . 7
|
| 18 | 16, 17 | nfbi 1834 |
. . . . . 6
|
| 19 | ralxpf.2 |
. . . . . . . . 9
| |
| 20 | 19 | nfsb 2109 |
. . . . . . . 8
|
| 21 | nfv 1619 |
. . . . . . . . 9
| |
| 22 | 21 | nfs1 2044 |
. . . . . . . 8
|
| 23 | 20, 22 | nfbi 1834 |
. . . . . . 7
|
| 24 | ralxpf.3 |
. . . . . . . . 9
| |
| 25 | ralxpf.4 |
. . . . . . . . 9
| |
| 26 | 24, 25 | sbhypf 2905 |
. . . . . . . 8
|
| 27 | opth 4603 |
. . . . . . . . 9
| |
| 28 | sbequ12 1919 |
. . . . . . . . . 10
| |
| 29 | 9, 28 | sylan9bb 680 |
. . . . . . . . 9
|
| 30 | 27, 29 | sylbi 187 |
. . . . . . . 8
|
| 31 | 26, 30 | sylan9bb 680 |
. . . . . . 7
|
| 32 | 23, 31 | exlimi 1803 |
. . . . . 6
|
| 33 | 18, 32 | exlimi 1803 |
. . . . 5
|
| 34 | 14, 33 | sylbi 187 |
. . . 4
|
| 35 | 34 | ralxp 4826 |
. . 3
|
| 36 | 3, 11, 35 | 3bitr4ri 269 |
. 2
|
| 37 | 1, 36 | bitri 240 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-iun 3972 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-xp 4785 |
| This theorem is referenced by: rexxpf 4829 |
| Copyright terms: Public domain | W3C validator |