New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralxpf | Unicode version |
Description: Version of ralxp 4826 with bound-variable hypotheses. (Contributed by NM, 18-Aug-2006.) (Revised by set.mm contributors, 20-Dec-2008.) |
Ref | Expression |
---|---|
ralxpf.1 | |
ralxpf.2 | |
ralxpf.3 | |
ralxpf.4 |
Ref | Expression |
---|---|
ralxpf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvralsv 2847 | . 2 | |
2 | cbvralsv 2847 | . . . 4 | |
3 | 2 | ralbii 2639 | . . 3 |
4 | nfv 1619 | . . . 4 | |
5 | nfcv 2490 | . . . . 5 | |
6 | nfv 1619 | . . . . . 6 | |
7 | 6 | nfs1 2044 | . . . . 5 |
8 | 5, 7 | nfral 2668 | . . . 4 |
9 | sbequ12 1919 | . . . . 5 | |
10 | 9 | ralbidv 2635 | . . . 4 |
11 | 4, 8, 10 | cbvral 2832 | . . 3 |
12 | vex 2863 | . . . . . 6 | |
13 | vex 2863 | . . . . . 6 | |
14 | 12, 13 | eqvinop 4607 | . . . . 5 |
15 | ralxpf.1 | . . . . . . . 8 | |
16 | 15 | nfsb 2109 | . . . . . . 7 |
17 | 7 | nfsb 2109 | . . . . . . 7 |
18 | 16, 17 | nfbi 1834 | . . . . . 6 |
19 | ralxpf.2 | . . . . . . . . 9 | |
20 | 19 | nfsb 2109 | . . . . . . . 8 |
21 | nfv 1619 | . . . . . . . . 9 | |
22 | 21 | nfs1 2044 | . . . . . . . 8 |
23 | 20, 22 | nfbi 1834 | . . . . . . 7 |
24 | ralxpf.3 | . . . . . . . . 9 | |
25 | ralxpf.4 | . . . . . . . . 9 | |
26 | 24, 25 | sbhypf 2905 | . . . . . . . 8 |
27 | opth 4603 | . . . . . . . . 9 | |
28 | sbequ12 1919 | . . . . . . . . . 10 | |
29 | 9, 28 | sylan9bb 680 | . . . . . . . . 9 |
30 | 27, 29 | sylbi 187 | . . . . . . . 8 |
31 | 26, 30 | sylan9bb 680 | . . . . . . 7 |
32 | 23, 31 | exlimi 1803 | . . . . . 6 |
33 | 18, 32 | exlimi 1803 | . . . . 5 |
34 | 14, 33 | sylbi 187 | . . . 4 |
35 | 34 | ralxp 4826 | . . 3 |
36 | 3, 11, 35 | 3bitr4ri 269 | . 2 |
37 | 1, 36 | bitri 240 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wex 1541 wnf 1544 wceq 1642 wsb 1648 wral 2615 cop 4562 cxp 4771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-iun 3972 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-xp 4785 |
This theorem is referenced by: rexxpf 4829 |
Copyright terms: Public domain | W3C validator |