| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > otkelins3kg | Unicode version | ||
| Description: Kuratowski ordered triple membership in Kuratowski insertion operator. (Contributed by SF, 12-Jan-2015.) |
| Ref | Expression |
|---|---|
| otkelins3kg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 4112 |
. . 3
| |
| 2 | opkex 4114 |
. . 3
| |
| 3 | opkelins3kg 4253 |
. . 3
| |
| 4 | 1, 2, 3 | mp2an 653 |
. 2
|
| 5 | 3anass 938 |
. . . . . . . . 9
| |
| 6 | eqcom 2355 |
. . . . . . . . . . 11
| |
| 7 | snex 4112 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | sneqb 3877 |
. . . . . . . . . . . 12
|
| 9 | vex 2863 |
. . . . . . . . . . . . 13
| |
| 10 | 9 | sneqb 3877 |
. . . . . . . . . . . 12
|
| 11 | 8, 10 | bitri 240 |
. . . . . . . . . . 11
|
| 12 | 6, 11 | bitri 240 |
. . . . . . . . . 10
|
| 13 | 12 | anbi1i 676 |
. . . . . . . . 9
|
| 14 | 5, 13 | bitri 240 |
. . . . . . . 8
|
| 15 | 14 | 2exbii 1583 |
. . . . . . 7
|
| 16 | 19.42vv 1907 |
. . . . . . 7
| |
| 17 | 15, 16 | bitri 240 |
. . . . . 6
|
| 18 | 17 | exbii 1582 |
. . . . 5
|
| 19 | opkeq1 4060 |
. . . . . . . . 9
| |
| 20 | 19 | eleq1d 2419 |
. . . . . . . 8
|
| 21 | 20 | anbi2d 684 |
. . . . . . 7
|
| 22 | 21 | 2exbidv 1628 |
. . . . . 6
|
| 23 | 22 | ceqsexgv 2972 |
. . . . 5
|
| 24 | 18, 23 | syl5bb 248 |
. . . 4
|
| 25 | 24 | 3ad2ant1 976 |
. . 3
|
| 26 | eqcom 2355 |
. . . . . . . . . . 11
| |
| 27 | vex 2863 |
. . . . . . . . . . . 12
| |
| 28 | vex 2863 |
. . . . . . . . . . . 12
| |
| 29 | opkthg 4132 |
. . . . . . . . . . . 12
| |
| 30 | 27, 28, 29 | mp3an12 1267 |
. . . . . . . . . . 11
|
| 31 | 26, 30 | syl5bb 248 |
. . . . . . . . . 10
|
| 32 | 31 | anbi1d 685 |
. . . . . . . . 9
|
| 33 | anass 630 |
. . . . . . . . 9
| |
| 34 | 32, 33 | syl6bb 252 |
. . . . . . . 8
|
| 35 | 34 | 2exbidv 1628 |
. . . . . . 7
|
| 36 | exdistr 1906 |
. . . . . . 7
| |
| 37 | 35, 36 | syl6bb 252 |
. . . . . 6
|
| 38 | 37 | adantl 452 |
. . . . 5
|
| 39 | opkeq2 4061 |
. . . . . . . . . 10
| |
| 40 | 39 | eleq1d 2419 |
. . . . . . . . 9
|
| 41 | 40 | anbi2d 684 |
. . . . . . . 8
|
| 42 | 41 | exbidv 1626 |
. . . . . . 7
|
| 43 | 42 | ceqsexgv 2972 |
. . . . . 6
|
| 44 | biidd 228 |
. . . . . . 7
| |
| 45 | 44 | ceqsexgv 2972 |
. . . . . 6
|
| 46 | 43, 45 | sylan9bb 680 |
. . . . 5
|
| 47 | 38, 46 | bitrd 244 |
. . . 4
|
| 48 | 47 | 3adant1 973 |
. . 3
|
| 49 | 25, 48 | bitrd 244 |
. 2
|
| 50 | 4, 49 | syl5bb 248 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-ins3k 4189 |
| This theorem is referenced by: otkelins3k 4257 opkelcokg 4262 opkelimagekg 4272 |
| Copyright terms: Public domain | W3C validator |