New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > otkelins3kg | Unicode version |
Description: Kuratowski ordered triple membership in Kuratowski insertion operator. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
otkelins3kg | Ins3k |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 4112 | . . 3 | |
2 | opkex 4114 | . . 3 | |
3 | opkelins3kg 4253 | . . 3 Ins3k | |
4 | 1, 2, 3 | mp2an 653 | . 2 Ins3k |
5 | 3anass 938 | . . . . . . . . 9 | |
6 | eqcom 2355 | . . . . . . . . . . 11 | |
7 | snex 4112 | . . . . . . . . . . . . 13 | |
8 | 7 | sneqb 3877 | . . . . . . . . . . . 12 |
9 | vex 2863 | . . . . . . . . . . . . 13 | |
10 | 9 | sneqb 3877 | . . . . . . . . . . . 12 |
11 | 8, 10 | bitri 240 | . . . . . . . . . . 11 |
12 | 6, 11 | bitri 240 | . . . . . . . . . 10 |
13 | 12 | anbi1i 676 | . . . . . . . . 9 |
14 | 5, 13 | bitri 240 | . . . . . . . 8 |
15 | 14 | 2exbii 1583 | . . . . . . 7 |
16 | 19.42vv 1907 | . . . . . . 7 | |
17 | 15, 16 | bitri 240 | . . . . . 6 |
18 | 17 | exbii 1582 | . . . . 5 |
19 | opkeq1 4060 | . . . . . . . . 9 | |
20 | 19 | eleq1d 2419 | . . . . . . . 8 |
21 | 20 | anbi2d 684 | . . . . . . 7 |
22 | 21 | 2exbidv 1628 | . . . . . 6 |
23 | 22 | ceqsexgv 2972 | . . . . 5 |
24 | 18, 23 | syl5bb 248 | . . . 4 |
25 | 24 | 3ad2ant1 976 | . . 3 |
26 | eqcom 2355 | . . . . . . . . . . 11 | |
27 | vex 2863 | . . . . . . . . . . . 12 | |
28 | vex 2863 | . . . . . . . . . . . 12 | |
29 | opkthg 4132 | . . . . . . . . . . . 12 | |
30 | 27, 28, 29 | mp3an12 1267 | . . . . . . . . . . 11 |
31 | 26, 30 | syl5bb 248 | . . . . . . . . . 10 |
32 | 31 | anbi1d 685 | . . . . . . . . 9 |
33 | anass 630 | . . . . . . . . 9 | |
34 | 32, 33 | syl6bb 252 | . . . . . . . 8 |
35 | 34 | 2exbidv 1628 | . . . . . . 7 |
36 | exdistr 1906 | . . . . . . 7 | |
37 | 35, 36 | syl6bb 252 | . . . . . 6 |
38 | 37 | adantl 452 | . . . . 5 |
39 | opkeq2 4061 | . . . . . . . . . 10 | |
40 | 39 | eleq1d 2419 | . . . . . . . . 9 |
41 | 40 | anbi2d 684 | . . . . . . . 8 |
42 | 41 | exbidv 1626 | . . . . . . 7 |
43 | 42 | ceqsexgv 2972 | . . . . . 6 |
44 | biidd 228 | . . . . . . 7 | |
45 | 44 | ceqsexgv 2972 | . . . . . 6 |
46 | 43, 45 | sylan9bb 680 | . . . . 5 |
47 | 38, 46 | bitrd 244 | . . . 4 |
48 | 47 | 3adant1 973 | . . 3 |
49 | 25, 48 | bitrd 244 | . 2 |
50 | 4, 49 | syl5bb 248 | 1 Ins3k |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 w3a 934 wex 1541 wceq 1642 wcel 1710 cvv 2860 csn 3738 copk 4058 Ins3k cins3k 4178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-ins3k 4189 |
This theorem is referenced by: otkelins3k 4257 opkelcokg 4262 opkelimagekg 4272 |
Copyright terms: Public domain | W3C validator |