| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > uneqdifeq | Unicode version | ||
| Description: Two ways to say that  | 
| Ref | Expression | 
|---|---|
| uneqdifeq | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uncom 3409 | 
. . . . 5
 | |
| 2 | eqtr 2370 | 
. . . . . . 7
 | |
| 3 | 2 | eqcomd 2358 | 
. . . . . 6
 | 
| 4 | difeq1 3247 | 
. . . . . . 7
 | |
| 5 | difun2 3630 | 
. . . . . . 7
 | |
| 6 | eqtr 2370 | 
. . . . . . . 8
 | |
| 7 | incom 3449 | 
. . . . . . . . . . 11
 | |
| 8 | 7 | eqeq1i 2360 | 
. . . . . . . . . 10
 | 
| 9 | disj3 3596 | 
. . . . . . . . . 10
 | |
| 10 | 8, 9 | bitri 240 | 
. . . . . . . . 9
 | 
| 11 | eqtr 2370 | 
. . . . . . . . . . 11
 | |
| 12 | 11 | expcom 424 | 
. . . . . . . . . 10
 | 
| 13 | 12 | eqcoms 2356 | 
. . . . . . . . 9
 | 
| 14 | 10, 13 | sylbi 187 | 
. . . . . . . 8
 | 
| 15 | 6, 14 | syl5com 26 | 
. . . . . . 7
 | 
| 16 | 4, 5, 15 | sylancl 643 | 
. . . . . 6
 | 
| 17 | 3, 16 | syl 15 | 
. . . . 5
 | 
| 18 | 1, 17 | mpan 651 | 
. . . 4
 | 
| 19 | 18 | com12 27 | 
. . 3
 | 
| 20 | 19 | adantl 452 | 
. 2
 | 
| 21 | difss 3394 | 
. . . . . . . 8
 | |
| 22 | sseq1 3293 | 
. . . . . . . . 9
 | |
| 23 | unss 3438 | 
. . . . . . . . . . 11
 | |
| 24 | 23 | biimpi 186 | 
. . . . . . . . . 10
 | 
| 25 | 24 | expcom 424 | 
. . . . . . . . 9
 | 
| 26 | 22, 25 | syl6bi 219 | 
. . . . . . . 8
 | 
| 27 | 21, 26 | mpi 16 | 
. . . . . . 7
 | 
| 28 | 27 | com12 27 | 
. . . . . 6
 | 
| 29 | 28 | adantr 451 | 
. . . . 5
 | 
| 30 | 29 | imp 418 | 
. . . 4
 | 
| 31 | eqimss 3324 | 
. . . . . . 7
 | |
| 32 | 31 | adantl 452 | 
. . . . . 6
 | 
| 33 | ssundif 3634 | 
. . . . . 6
 | |
| 34 | 32, 33 | sylibr 203 | 
. . . . 5
 | 
| 35 | 34 | adantlr 695 | 
. . . 4
 | 
| 36 | 30, 35 | eqssd 3290 | 
. . 3
 | 
| 37 | 36 | ex 423 | 
. 2
 | 
| 38 | 20, 37 | impbid 183 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |