New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqeq1i | Unicode version |
Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq1i.1 |
Ref | Expression |
---|---|
eqeq1i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1i.1 | . 2 | |
2 | eqeq1 2359 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: ssequn2 3437 dfss1 3461 dfss4 3490 disjr 3593 undisj1 3603 undisj2 3604 undif 3631 uneqdifeq 3639 reusn 3794 rabsneu 3796 eusn 3797 uniintsn 3964 dfiota4 4373 dfaddc2 4382 addccom 4407 addcass 4416 nndisjeq 4430 vfin1cltv 4548 phidisjnn 4616 opeqexb 4621 dmopab3 4918 dm0rn0 4922 ssdmres 4988 resabs1 4993 imadisj 5016 intirr 5030 dminxp 5062 funun 5147 fncnv 5159 dff1o4 5295 fvun2 5381 fvco2 5383 fvopab3ig 5388 fvpr2 5451 fnopovb 5558 ov 5596 ovigg 5597 ovg 5602 oprssdm 5613 brcupg 5815 braddcfn 5827 fnsex 5833 brcrossg 5849 brpw1fn 5855 brfullfung 5866 brfullfunop 5868 dfnnc3 5886 map0 6026 eqtc 6162 brtcfn 6247 nnc3n3p1 6279 nnc3n3p2 6280 nchoicelem14 6303 fnfreclem2 6319 fnfreclem3 6320 |
Copyright terms: Public domain | W3C validator |