Proof of Theorem uneqdifeq
| Step | Hyp | Ref
| Expression |
| 1 | | uncom 3409 |
. . . . 5
⊢ (B ∪ A) =
(A ∪ B) |
| 2 | | eqtr 2370 |
. . . . . . 7
⊢ (((B ∪ A) =
(A ∪ B) ∧ (A ∪ B) =
C) → (B ∪ A) =
C) |
| 3 | 2 | eqcomd 2358 |
. . . . . 6
⊢ (((B ∪ A) =
(A ∪ B) ∧ (A ∪ B) =
C) → C = (B ∪
A)) |
| 4 | | difeq1 3247 |
. . . . . . 7
⊢ (C = (B ∪
A) → (C ∖ A) = ((B ∪
A) ∖
A)) |
| 5 | | difun2 3630 |
. . . . . . 7
⊢ ((B ∪ A) ∖ A) =
(B ∖
A) |
| 6 | | eqtr 2370 |
. . . . . . . 8
⊢ (((C ∖ A) = ((B ∪
A) ∖
A) ∧
((B ∪ A) ∖ A) = (B ∖ A)) →
(C ∖
A) = (B
∖ A)) |
| 7 | | incom 3449 |
. . . . . . . . . . 11
⊢ (A ∩ B) =
(B ∩ A) |
| 8 | 7 | eqeq1i 2360 |
. . . . . . . . . 10
⊢ ((A ∩ B) =
∅ ↔ (B ∩ A) =
∅) |
| 9 | | disj3 3596 |
. . . . . . . . . 10
⊢ ((B ∩ A) =
∅ ↔ B = (B ∖ A)) |
| 10 | 8, 9 | bitri 240 |
. . . . . . . . 9
⊢ ((A ∩ B) =
∅ ↔ B = (B ∖ A)) |
| 11 | | eqtr 2370 |
. . . . . . . . . . 11
⊢ (((C ∖ A) = (B ∖ A) ∧ (B ∖ A) =
B) → (C ∖ A) = B) |
| 12 | 11 | expcom 424 |
. . . . . . . . . 10
⊢ ((B ∖ A) = B →
((C ∖
A) = (B
∖ A)
→ (C ∖ A) =
B)) |
| 13 | 12 | eqcoms 2356 |
. . . . . . . . 9
⊢ (B = (B ∖ A) →
((C ∖
A) = (B
∖ A)
→ (C ∖ A) =
B)) |
| 14 | 10, 13 | sylbi 187 |
. . . . . . . 8
⊢ ((A ∩ B) =
∅ → ((C ∖ A) = (B ∖ A) →
(C ∖
A) = B)) |
| 15 | 6, 14 | syl5com 26 |
. . . . . . 7
⊢ (((C ∖ A) = ((B ∪
A) ∖
A) ∧
((B ∪ A) ∖ A) = (B ∖ A)) →
((A ∩ B) = ∅ →
(C ∖
A) = B)) |
| 16 | 4, 5, 15 | sylancl 643 |
. . . . . 6
⊢ (C = (B ∪
A) → ((A ∩ B) =
∅ → (C ∖ A) = B)) |
| 17 | 3, 16 | syl 15 |
. . . . 5
⊢ (((B ∪ A) =
(A ∪ B) ∧ (A ∪ B) =
C) → ((A ∩ B) =
∅ → (C ∖ A) = B)) |
| 18 | 1, 17 | mpan 651 |
. . . 4
⊢ ((A ∪ B) =
C → ((A ∩ B) =
∅ → (C ∖ A) = B)) |
| 19 | 18 | com12 27 |
. . 3
⊢ ((A ∩ B) =
∅ → ((A ∪ B) =
C → (C ∖ A) = B)) |
| 20 | 19 | adantl 452 |
. 2
⊢ ((A ⊆ C ∧ (A ∩ B) =
∅) → ((A ∪ B) =
C → (C ∖ A) = B)) |
| 21 | | difss 3394 |
. . . . . . . 8
⊢ (C ∖ A) ⊆ C |
| 22 | | sseq1 3293 |
. . . . . . . . 9
⊢ ((C ∖ A) = B →
((C ∖
A) ⊆
C ↔ B ⊆ C)) |
| 23 | | unss 3438 |
. . . . . . . . . . 11
⊢ ((A ⊆ C ∧ B ⊆ C) ↔ (A
∪ B) ⊆ C) |
| 24 | 23 | biimpi 186 |
. . . . . . . . . 10
⊢ ((A ⊆ C ∧ B ⊆ C) → (A
∪ B) ⊆ C) |
| 25 | 24 | expcom 424 |
. . . . . . . . 9
⊢ (B ⊆ C → (A
⊆ C
→ (A ∪ B) ⊆ C)) |
| 26 | 22, 25 | syl6bi 219 |
. . . . . . . 8
⊢ ((C ∖ A) = B →
((C ∖
A) ⊆
C → (A ⊆ C → (A
∪ B) ⊆ C))) |
| 27 | 21, 26 | mpi 16 |
. . . . . . 7
⊢ ((C ∖ A) = B →
(A ⊆
C → (A ∪ B) ⊆ C)) |
| 28 | 27 | com12 27 |
. . . . . 6
⊢ (A ⊆ C → ((C
∖ A) =
B → (A ∪ B) ⊆ C)) |
| 29 | 28 | adantr 451 |
. . . . 5
⊢ ((A ⊆ C ∧ (A ∩ B) =
∅) → ((C ∖ A) = B →
(A ∪ B) ⊆ C)) |
| 30 | 29 | imp 418 |
. . . 4
⊢ (((A ⊆ C ∧ (A ∩ B) =
∅) ∧
(C ∖
A) = B)
→ (A ∪ B) ⊆ C) |
| 31 | | eqimss 3324 |
. . . . . . 7
⊢ ((C ∖ A) = B →
(C ∖
A) ⊆
B) |
| 32 | 31 | adantl 452 |
. . . . . 6
⊢ ((A ⊆ C ∧ (C ∖ A) = B) →
(C ∖
A) ⊆
B) |
| 33 | | ssundif 3634 |
. . . . . 6
⊢ (C ⊆ (A ∪ B)
↔ (C ∖ A) ⊆ B) |
| 34 | 32, 33 | sylibr 203 |
. . . . 5
⊢ ((A ⊆ C ∧ (C ∖ A) = B) →
C ⊆
(A ∪ B)) |
| 35 | 34 | adantlr 695 |
. . . 4
⊢ (((A ⊆ C ∧ (A ∩ B) =
∅) ∧
(C ∖
A) = B)
→ C ⊆ (A ∪
B)) |
| 36 | 30, 35 | eqssd 3290 |
. . 3
⊢ (((A ⊆ C ∧ (A ∩ B) =
∅) ∧
(C ∖
A) = B)
→ (A ∪ B) = C) |
| 37 | 36 | ex 423 |
. 2
⊢ ((A ⊆ C ∧ (A ∩ B) =
∅) → ((C ∖ A) = B →
(A ∪ B) = C)) |
| 38 | 20, 37 | impbid 183 |
1
⊢ ((A ⊆ C ∧ (A ∩ B) =
∅) → ((A ∪ B) =
C ↔ (C ∖ A) = B)) |