New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssundif Unicode version

Theorem ssundif 3633
 Description: A condition equivalent to inclusion in the union of two classes. (Contributed by NM, 26-Mar-2007.)
Assertion
Ref Expression
ssundif

Proof of Theorem ssundif
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 pm5.6 878 . . . 4
2 eldif 3221 . . . . 5
32imbi1i 315 . . . 4
4 elun 3220 . . . . 5
54imbi2i 303 . . . 4
61, 3, 53bitr4ri 269 . . 3
76albii 1566 . 2
8 dfss2 3262 . 2
9 dfss2 3262 . 2
107, 8, 93bitr4i 268 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 176   wo 357   wa 358  wal 1540   wcel 1710   cdif 3206   cun 3207   wss 3257 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-ss 3259 This theorem is referenced by:  difcom  3634  uneqdifeq  3638  ssunsn2  3865  pwadjoin  4119
 Copyright terms: Public domain W3C validator