New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssundif | Unicode version |
Description: A condition equivalent to inclusion in the union of two classes. (Contributed by NM, 26-Mar-2007.) |
Ref | Expression |
---|---|
ssundif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.6 878 | . . . 4 | |
2 | eldif 3222 | . . . . 5 | |
3 | 2 | imbi1i 315 | . . . 4 |
4 | elun 3221 | . . . . 5 | |
5 | 4 | imbi2i 303 | . . . 4 |
6 | 1, 3, 5 | 3bitr4ri 269 | . . 3 |
7 | 6 | albii 1566 | . 2 |
8 | dfss2 3263 | . 2 | |
9 | dfss2 3263 | . 2 | |
10 | 7, 8, 9 | 3bitr4i 268 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wo 357 wa 358 wal 1540 wcel 1710 cdif 3207 cun 3208 wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 |
This theorem is referenced by: difcom 3635 uneqdifeq 3639 ssunsn2 3866 pwadjoin 4120 |
Copyright terms: Public domain | W3C validator |