NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  unisn Unicode version

Theorem unisn 3908
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
unisn.1
Assertion
Ref Expression
unisn

Proof of Theorem unisn
StepHypRef Expression
1 dfsn2 3748 . . 3
21unieqi 3902 . 2
3 unisn.1 . . 3
43, 3unipr 3906 . 2
5 unidm 3408 . 2
62, 4, 53eqtri 2377 1
Colors of variables: wff setvar class
Syntax hints:   wceq 1642   wcel 1710  cvv 2860   cun 3208  csn 3738  cpr 3739  cuni 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215  df-sn 3742  df-pr 3743  df-uni 3893
This theorem is referenced by:  unisng  3909  uniintsn  3964  pw1eqadj  4333  uniabio  4350  nnadjoin  4521  op1sta  5073  opswap  5075  op2nda  5077  funfv  5376  pw1fnval  5852  pw1fnf1o  5856  brtcfn  6247
  Copyright terms: Public domain W3C validator