| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > unisn | GIF version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| unisn.1 | ⊢ A ∈ V | 
| Ref | Expression | 
|---|---|
| unisn | ⊢ ∪{A} = A | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfsn2 3748 | . . 3 ⊢ {A} = {A, A} | |
| 2 | 1 | unieqi 3902 | . 2 ⊢ ∪{A} = ∪{A, A} | 
| 3 | unisn.1 | . . 3 ⊢ A ∈ V | |
| 4 | 3, 3 | unipr 3906 | . 2 ⊢ ∪{A, A} = (A ∪ A) | 
| 5 | unidm 3408 | . 2 ⊢ (A ∪ A) = A | |
| 6 | 2, 4, 5 | 3eqtri 2377 | 1 ⊢ ∪{A} = A | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1642 ∈ wcel 1710 Vcvv 2860 ∪ cun 3208 {csn 3738 {cpr 3739 ∪cuni 3892 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-uni 3893 | 
| This theorem is referenced by: unisng 3909 uniintsn 3964 pw1eqadj 4333 uniabio 4350 nnadjoin 4521 op1sta 5073 opswap 5075 op2nda 5077 funfv 5376 pw1fnval 5852 pw1fnf1o 5856 brtcfn 6247 | 
| Copyright terms: Public domain | W3C validator |