NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  vtoclgft Unicode version

Theorem vtoclgft 2906
Description: Closed theorem form of vtoclgf 2914. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 12-Oct-2016.)
Assertion
Ref Expression
vtoclgft  F/_  F/

Proof of Theorem vtoclgft
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elex 2868 . 2
2 elisset 2870 . . . . 5
323ad2ant3 978 . . . 4  F/_  F/
4 nfnfc1 2493 . . . . . . 7  F/ F/_
5 nfcvd 2491 . . . . . . . 8  F/_  F/_
6 id 19 . . . . . . . 8  F/_  F/_
75, 6nfeqd 2504 . . . . . . 7  F/_  F/
8 eqeq1 2359 . . . . . . . 8
98a1i 10 . . . . . . 7  F/_
104, 7, 9cbvexd 2009 . . . . . 6  F/_
1110ad2antrr 706 . . . . 5  F/_  F/
12113adant3 975 . . . 4  F/_  F/
133, 12mpbid 201 . . 3  F/_  F/
14 bi1 178 . . . . . . . . 9
1514imim2i 13 . . . . . . . 8
1615com23 72 . . . . . . 7
1716imp 418 . . . . . 6
1817alanimi 1562 . . . . 5
19183ad2ant2 977 . . . 4  F/_  F/
20 simp1r 980 . . . . 5  F/_  F/  F/
21 19.23t 1800 . . . . 5  F/
2220, 21syl 15 . . . 4  F/_  F/
2319, 22mpbid 201 . . 3  F/_  F/
2413, 23mpd 14 . 2  F/_  F/
251, 24syl3an3 1217 1  F/_  F/
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   w3a 934  wal 1540  wex 1541   F/wnf 1544   wceq 1642   wcel 1710   F/_wnfc 2477  cvv 2860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862
This theorem is referenced by:  vtocldf  2907  iota2df  4366
  Copyright terms: Public domain W3C validator