Step | Hyp | Ref
| Expression |
1 | | elex 2868 |
. 2
⊢ (A ∈ V → A ∈ V) |
2 | | elisset 2870 |
. . . . 5
⊢ (A ∈ V → ∃z z = A) |
3 | 2 | 3ad2ant3 978 |
. . . 4
⊢
(((ℲxA ∧ Ⅎxψ) ∧ (∀x(x = A → (φ
↔ ψ)) ∧ ∀xφ) ∧ A ∈ V) → ∃z z = A) |
4 | | nfnfc1 2493 |
. . . . . . 7
⊢ ℲxℲxA |
5 | | nfcvd 2491 |
. . . . . . . 8
⊢
(ℲxA → Ⅎxz) |
6 | | id 19 |
. . . . . . . 8
⊢
(ℲxA → ℲxA) |
7 | 5, 6 | nfeqd 2504 |
. . . . . . 7
⊢
(ℲxA → Ⅎx z = A) |
8 | | eqeq1 2359 |
. . . . . . . 8
⊢ (z = x →
(z = A
↔ x = A)) |
9 | 8 | a1i 10 |
. . . . . . 7
⊢
(ℲxA → (z =
x → (z = A ↔
x = A))) |
10 | 4, 7, 9 | cbvexd 2009 |
. . . . . 6
⊢
(ℲxA → (∃z z = A ↔
∃x
x = A)) |
11 | 10 | ad2antrr 706 |
. . . . 5
⊢
(((ℲxA ∧ Ⅎxψ) ∧ (∀x(x = A → (φ
↔ ψ)) ∧ ∀xφ)) →
(∃z
z = A
↔ ∃x x = A)) |
12 | 11 | 3adant3 975 |
. . . 4
⊢
(((ℲxA ∧ Ⅎxψ) ∧ (∀x(x = A → (φ
↔ ψ)) ∧ ∀xφ) ∧ A ∈ V) → (∃z z = A ↔
∃x
x = A)) |
13 | 3, 12 | mpbid 201 |
. . 3
⊢
(((ℲxA ∧ Ⅎxψ) ∧ (∀x(x = A → (φ
↔ ψ)) ∧ ∀xφ) ∧ A ∈ V) → ∃x x = A) |
14 | | bi1 178 |
. . . . . . . . 9
⊢ ((φ ↔ ψ) → (φ → ψ)) |
15 | 14 | imim2i 13 |
. . . . . . . 8
⊢ ((x = A →
(φ ↔ ψ)) → (x = A →
(φ → ψ))) |
16 | 15 | com23 72 |
. . . . . . 7
⊢ ((x = A →
(φ ↔ ψ)) → (φ → (x = A →
ψ))) |
17 | 16 | imp 418 |
. . . . . 6
⊢ (((x = A →
(φ ↔ ψ)) ∧ φ) → (x = A →
ψ)) |
18 | 17 | alanimi 1562 |
. . . . 5
⊢ ((∀x(x = A →
(φ ↔ ψ)) ∧ ∀xφ) → ∀x(x = A →
ψ)) |
19 | 18 | 3ad2ant2 977 |
. . . 4
⊢
(((ℲxA ∧ Ⅎxψ) ∧ (∀x(x = A → (φ
↔ ψ)) ∧ ∀xφ) ∧ A ∈ V) → ∀x(x = A →
ψ)) |
20 | | simp1r 980 |
. . . . 5
⊢
(((ℲxA ∧ Ⅎxψ) ∧ (∀x(x = A → (φ
↔ ψ)) ∧ ∀xφ) ∧ A ∈ V) → Ⅎxψ) |
21 | | 19.23t 1800 |
. . . . 5
⊢ (Ⅎxψ →
(∀x(x = A → ψ)
↔ (∃x x = A → ψ))) |
22 | 20, 21 | syl 15 |
. . . 4
⊢
(((ℲxA ∧ Ⅎxψ) ∧ (∀x(x = A → (φ
↔ ψ)) ∧ ∀xφ) ∧ A ∈ V) → (∀x(x = A →
ψ) ↔ (∃x x = A →
ψ))) |
23 | 19, 22 | mpbid 201 |
. . 3
⊢
(((ℲxA ∧ Ⅎxψ) ∧ (∀x(x = A → (φ
↔ ψ)) ∧ ∀xφ) ∧ A ∈ V) → (∃x x = A →
ψ)) |
24 | 13, 23 | mpd 14 |
. 2
⊢
(((ℲxA ∧ Ⅎxψ) ∧ (∀x(x = A → (φ
↔ ψ)) ∧ ∀xφ) ∧ A ∈ V) → ψ) |
25 | 1, 24 | syl3an3 1217 |
1
⊢
(((ℲxA ∧ Ⅎxψ) ∧ (∀x(x = A → (φ
↔ ψ)) ∧ ∀xφ) ∧ A ∈ V) →
ψ) |