NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfeqd Unicode version

Theorem nfeqd 2504
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1  F/_
nfeqd.2  F/_
Assertion
Ref Expression
nfeqd  F/

Proof of Theorem nfeqd
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2347 . 2
2 nfv 1619 . . 3  F/
3 nfeqd.1 . . . . 5  F/_
43nfcrd 2503 . . . 4  F/
5 nfeqd.2 . . . . 5  F/_
65nfcrd 2503 . . . 4  F/
74, 6nfbid 1832 . . 3  F/
82, 7nfald 1852 . 2  F/
91, 8nfxfrd 1571 1  F/
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176  wal 1540   F/wnf 1544   wceq 1642   wcel 1710   F/_wnfc 2477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-cleq 2346  df-nfc 2479
This theorem is referenced by:  nfeld  2505  nfned  2613  vtoclgft  2906  sbcralt  3119  csbiebt  3173  dfnfc2  3910  nfiotad  4343  iota2df  4366  dfid3  4769  oprabid  5551
  Copyright terms: Public domain W3C validator