NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  xpeq1 Unicode version

Theorem xpeq1 4798
Description: Equality theorem for cross product. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
xpeq1

Proof of Theorem xpeq1
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2414 . . . 4
21anbi1d 685 . . 3
32opabbidv 4625 . 2
4 df-xp 4784 . 2
5 df-xp 4784 . 2
63, 4, 53eqtr4g 2410 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wa 358   wceq 1642   wcel 1710  copab 4622   cxp 4770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-opab 4623  df-xp 4784
This theorem is referenced by:  xpeq12  4803  xpeq1i  4804  xpeq1d  4807  dmxpid  4924  reseq2  4929  xpnz  5045  xpdisj1  5047  xpcan2  5058  ovcross  5845  pmvalg  6010  xpsneng  6050  xpcomeng  6053
  Copyright terms: Public domain W3C validator