Theorem List for New Foundations Explorer - 4701-4800 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | opelopabga 4701* |
The law of concretion. Theorem 9.5 of [Quine] p.
61. (Contributed by
Mario Carneiro, 19-Dec-2013.)
|
|
|
Theorem | brabga 4702* |
The law of concretion for a binary relation. (Contributed by Mario
Carneiro, 19-Dec-2013.)
|
|
|
Theorem | opelopab2a 4703* |
Ordered pair membership in an ordered pair class abstraction.
(Contributed by Mario Carneiro, 19-Dec-2013.)
|
|
|
Theorem | opelopaba 4704* |
The law of concretion. Theorem 9.5 of [Quine] p.
61. (Contributed by
Mario Carneiro, 19-Dec-2013.)
|
|
|
Theorem | braba 4705* |
The law of concretion for a binary relation. (Contributed by NM,
19-Dec-2013.)
|
|
|
Theorem | opelopabg 4706* |
The law of concretion. Theorem 9.5 of [Quine] p.
61. (Contributed by
NM, 28-May-1995.) (Revised by set.mm contributors, 19-Dec-2013.)
|
|
|
Theorem | brabg 4707* |
The law of concretion for a binary relation. (Contributed by NM,
16-Aug-1999.) (Revised by set.mm contributors, 19-Dec-2013.)
|
|
|
Theorem | opelopab2 4708* |
Ordered pair membership in an ordered pair class abstraction.
(Contributed by NM, 14-Oct-2007.) (Revised by set.mm contributors,
19-Dec-2013.)
|
|
|
Theorem | opelopab 4709* |
The law of concretion. Theorem 9.5 of [Quine] p.
61. (Contributed by
NM, 16-May-1995.)
|
|
|
Theorem | brab 4710* |
The law of concretion for a binary relation. (Contributed by NM,
16-Aug-1999.)
|
|
|
Theorem | opelopabaf 4711* |
The law of concretion. Theorem 9.5 of [Quine] p.
61. This version of
opelopab 4709 uses bound-variable hypotheses in place of
distinct variable
conditions." (Contributed by Mario Carneiro, 19-Dec-2013.) (Proof
shortened by Mario Carneiro, 18-Nov-2016.)
|
|
|
Theorem | opelopabf 4712* |
The law of concretion. Theorem 9.5 of [Quine] p.
61. This version of
opelopab 4709 uses bound-variable hypotheses in place of
distinct variable
conditions." (Contributed by NM, 19-Dec-2008.)
|
|
|
Theorem | ssopab2 4713 |
Equivalence of ordered pair abstraction subclass and implication.
(Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro,
19-May-2013.)
|
|
|
Theorem | ssopab2b 4714 |
Equivalence of ordered pair abstraction subclass and implication.
(Contributed by NM, 27-Dec-1996.) (Proof shortened by Mario Carneiro,
18-Nov-2016.)
|
|
|
Theorem | ssopab2i 4715 |
Inference of ordered pair abstraction subclass from implication.
(Contributed by NM, 5-Apr-1995.)
|
|
|
Theorem | ssopab2dv 4716* |
Inference of ordered pair abstraction subclass from implication.
(Contributed by NM, 19-Jan-2014.) (Revised by Mario Carneiro,
24-Jun-2014.)
|
|
|
Theorem | opabn0 4717 |
Nonempty ordered pair class abstraction. (Contributed by NM,
10-Oct-2007.)
|
|
|
2.3.5 Set construction functions
|
|
Syntax | c1st 4718 |
Extend the definition of a class to include the first member an ordered
pair function.
|
|
|
Syntax | cswap 4719 |
Extend the definition of a class to include the swap function.
|
Swap
|
|
Syntax | csset 4720 |
Extend the definition of a class to include the subset relationship.
|
S |
|
Syntax | csi 4721 |
Extend the definition of a class to include the singleton image.
|
SI |
|
Syntax | ccom 4722 |
Extend the definition of a class to include the composition of two
classes.
|
|
|
Syntax | cima 4723 |
Extend the definition of a class to include the image of one class under
another.
|
|
|
Definition | df-1st 4724* |
Define a function that extracts the first member, or abscissa, of an
ordered pair. (Contributed by SF, 5-Jan-2015.)
|
|
|
Definition | df-swap 4725* |
Define a function that swaps the two elements of an ordered pair.
(Contributed by SF, 5-Jan-2015.)
|
Swap
|
|
Definition | df-sset 4726* |
Define a relationship that holds between subsets. (Contributed by SF,
5-Jan-2015.)
|
S
|
|
Definition | df-co 4727* |
Define the composition of two classes. (Contributed by SF,
5-Jan-2015.)
|
|
|
Definition | df-ima 4728* |
Define the image of one class under another. (Contributed by SF,
5-Jan-2015.)
|
|
|
Definition | df-si 4729* |
Define the singleton image of a class. (Contributed by SF,
5-Jan-2015.)
|
SI |
|
Theorem | el1st 4730* |
Membership in .
(Contributed by SF, 5-Jan-2015.)
|
|
|
Theorem | br1stg 4731 |
The binary relationship over the function. (Contributed by SF,
5-Jan-2015.)
|
|
|
Theorem | setconslem1 4732* |
Lemma for the set construction theorems. (Contributed by SF,
6-Jan-2015.)
|
Sk k SIk kImagekImagek Ins3k
∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k
Phi |
|
Theorem | setconslem2 4733* |
Lemma for the set construction theorems. (Contributed by SF,
6-Jan-2015.)
|
Ins2k
Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek
Ins3k ∼ Ins3k
Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1c
Phi 0c |
|
Theorem | setconslem3 4734 |
Lemma for set construction functions. Set up a mapping between
Kuratowski and Quine ordered pairs. (Contributed by SF, 7-Jan-2015.)
|
∼ Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k
∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins2k
Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek
Ins3k ∼ Ins3k
Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1c |
|
Theorem | setconslem4 4735* |
Lemma for set construction functions. Create a mapping between the two
types of ordered pair abstractions. (Contributed by SF, 7-Jan-2015.)
|
⋃1⋃1 k k
k
∼ Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k
∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins2k
Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek
Ins3k ∼ Ins3k
Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1ck |
|
Theorem | setconslem5 4736 |
Lemma for set construction theorems. The big expression in the middle of
setconslem4 4735 forms a set. (Contributed by SF,
7-Jan-2015.)
|
∼
Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k
∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins2k
Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek
Ins3k ∼ Ins3k
Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1c |
|
Theorem | setconslem6 4737* |
Lemma for the set construction functions. Invert the expression from
setconslem4 4735. (Contributed by SF, 7-Jan-2015.)
|
k k ∼ Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k
∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins2k
Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek
Ins3k ∼ Ins3k
Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1ck1 1 |
|
Theorem | setconslem7 4738 |
Lemma for the set construction theorems. Reorganized version of
setconslem3 4734. (Contributed by SF, 4-Feb-2015.)
|
∼ Ins2k Ins3k Sk Ins2k Ins2k Sk k SIk kImagekImagek Ins3k
∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins3k
SIk SIk Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek
Ins3k ∼ Ins3k
Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1c |
|
Theorem | df1st2 4739 |
Express the
function via the set construction functions.
(Contributed by SF, 4-Feb-2015.)
|
⋃1⋃1 k k
k
∼ Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k
∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins2k
Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek
Ins3k ∼ Ins3k
Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1ck ∼ Ins2k Ins3k Sk Ins2k Ins2k Sk k SIk kImagekImagek Ins3k
∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins3k
SIk SIk Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek
Ins3k ∼ Ins3k
Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1ck1 1c |
|
Theorem | 1stex 4740 |
The function is a
set. (Contributed by SF, 6-Jan-2015.)
|
|
|
Theorem | elswap 4741* |
Membership in the Swap function. (Contributed
by SF,
6-Jan-2015.)
|
Swap |
|
Theorem | dfswap2 4742 |
Express the Swap function via set construction
operators.
(Contributed by SF, 6-Jan-2015.)
|
Swap ∼ Ins2k Ins2k Sk Ins2k Ins2k Ins3k Sk k SIk kImagekImagek Ins3k
∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins3k
SIk SIk Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek
Ins3k ∼ Ins3k
Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1c Ins3k SIk SIk SIk SIk SIk ImagekImagek Ins3k
∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k1 1 1 1 1 1 1c Ins2k Ins3k SIk SIk Sk k SIk kImagekImagek Ins3k
∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins2k
Ins3k Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek
Ins3k ∼ Ins3k
Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1c Ins3k SIk SIk SIk SIk SIk ∼ Ins2k Sk Ins3k kImagekImagek
Ins3k ∼ Ins3k
Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1 1 1 1 1ck1 1 1 1 1ck1 1ck |
|
Theorem | swapex 4743 |
The Swap function is a set. (Contributed by SF,
6-Jan-2015.)
|
Swap |
|
Theorem | dfsset2 4744 |
Express the S relationship via the set
construction functors.
(Contributed by SF, 7-Jan-2015.)
|
S
⋃1⋃1 k k
k
∼ Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k
∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins2k
Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek
Ins3k ∼ Ins3k
Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1ck Sk |
|
Theorem | ssetex 4745 |
The subset relationship is a set. (Contributed by SF, 6-Jan-2015.)
|
S |
|
Theorem | dfima2 4746 |
Express the image functor in terms of the set construction functions.
(Contributed by SF, 7-Jan-2015.)
|
k k ∼ Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k
∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins2k
Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek
Ins3k ∼ Ins3k
Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1ck1 1 k |
|
Theorem | imaexg 4747 |
The image of a set under a set is a set. (Contributed by SF,
7-Jan-2015.)
|
|
|
Theorem | imaex 4748 |
The image of a set under a set is a set. (Contributed by SF,
7-Jan-2015.)
|
|
|
Theorem | dfco1 4749 |
Express Quine composition via Kuratowski composition. (Contributed by
SF, 7-Jan-2015.)
|
⋃1⋃1 k k
k
∼ Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k
∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins2k
Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek
Ins3k ∼ Ins3k
Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1ck k k ∼ Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k
∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins2k
Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek
Ins3k ∼ Ins3k
Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1ck1 1 k k k ∼ Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k
∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins2k
Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek
Ins3k ∼ Ins3k
Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1ck1 1 |
|
Theorem | coexg 4750 |
The composition of two sets is a set. (Contributed by SF, 7-Jan-2015.)
|
|
|
Theorem | coex 4751 |
The composition of two sets is a set. (Contributed by SF,
7-Jan-2015.)
|
|
|
Theorem | dfsi2 4752 |
Express singleton image in terms of the Kuratowski singleton image.
(Contributed by SF, 7-Jan-2015.)
|
SI
⋃1⋃1 k k
k
∼ Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k
∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins2k
Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek
Ins3k ∼ Ins3k
Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1ck SIk k k ∼ Ins3k SIk SIk Sk Ins2k Ins3k Sk k SIk kImagekImagek Ins3k
∼ Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k Ins2k
Ins2k Sk Ins3k SIk ∼ Ins2k Sk Ins3k kImagekImagek
Ins3k ∼ Ins3k
Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k ∼ Nn k k Sk 0c k k1 1 1ck1 1 1ck1 1 1 1 1ck1 1 |
|
Theorem | siexg 4753 |
The singleton image of a set is a set. (Contributed by SF,
7-Jan-2015.)
|
SI |
|
Theorem | siex 4754 |
The singleton image of a set is a set. (Contributed by SF,
7-Jan-2015.)
|
SI |
|
Theorem | elima 4755* |
Membership in an image. Theorem 34 of [Suppes]
p. 65. (Contributed by
SF, 19-Apr-2004.)
|
|
|
Theorem | elima2 4756* |
Membership in an image. Theorem 34 of [Suppes]
p. 65. (Contributed by
SF, 11-Aug-2004.)
|
|
|
Theorem | elima3 4757* |
Membership in an image. Theorem 34 of [Suppes]
p. 65. (Contributed by
SF, 14-Aug-1994.)
|
|
|
Theorem | brssetg 4758 |
Binary relationship form of the subset relationship. (Contributed by
SF, 11-Feb-2015.)
|
S
|
|
Theorem | brsset 4759 |
Binary relationship form of the subset relationship. (Contributed by
SF, 11-Feb-2015.)
|
S |
|
Theorem | brssetsn 4760 |
Set membership in terms of the subset relationship. (Contributed by SF,
11-Feb-2015.)
|
S |
|
Theorem | opelssetsn 4761 |
Set membership in terms of the subset relationship. (Contributed by SF,
11-Feb-2015.)
|
S |
|
Theorem | brsi 4762* |
Binary relationship over a singleton image. (Contributed by SF,
11-Feb-2015.)
|
SI |
|
2.3.6 Epsilon and identity
relations
|
|
Syntax | cep 4763 |
Extend class notation to include the epsilon relation.
|
|
|
Syntax | cid 4764 |
Extend the definition of a class to include identity relation.
|
|
|
Definition | df-eprel 4765* |
Define the epsilon relation. Similar to Definition 6.22 of
[TakeutiZaring] p. 30.
(Contributed by SF, 5-Jan-2015.)
|
|
|
Theorem | epelc 4766 |
The epsilon relation and the membership relation are the same.
(Contributed by NM, 13-Aug-1995.)
|
|
|
Theorem | epel 4767 |
The epsilon relation and the membership relation are the same.
(Contributed by NM, 13-Aug-1995.)
|
|
|
Definition | df-id 4768* |
Define the identity relation. Definition 9.15 of [Quine] p. 64.
(Contributed by SF, 5-Jan-2015.)
|
|
|
Theorem | dfid3 4769 |
A stronger version of df-id 4768 that doesn't require and to be
distinct. Ordinarily, we wouldn't use this as a definition, since
non-distinct dummy variables would make soundness verification more
difficult (as the proof here shows). The proof can be instructive in
showing how distinct variable requirements may be eliminated, a task
that is not necessarily obvious. (Contributed by NM, 5-Feb-2008.)
(Revised by Mario Carneiro, 18-Nov-2016.)
|
|
|
Theorem | dfid2 4770 |
Alternate definition of the identity relation. (Contributed by NM,
15-Mar-2007.)
|
|
|
2.3.7 Functions and relations
|
|
Syntax | cxp 4771 |
Extend the definition of a class to include the cross product.
|
|
|
Syntax | ccnv 4772 |
Extend the definition of a class to include the converse of a class.
|
|
|
Syntax | cdm 4773 |
Extend the definition of a class to include the domain of a class.
|
|
|
Syntax | crn 4774 |
Extend the definition of a class to include the range of a class.
|
|
|
Syntax | cres 4775 |
Extend the definition of a class to include the restriction of a class.
(Read: The restriction of to .)
|
|
|
Syntax | wfun 4776 |
Extend the definition of a wff to include the function predicate. (Read:
is a function.)
|
|
|
Syntax | wfn 4777 |
Extend the definition of a wff to include the function predicate with a
domain. (Read:
is a function on .)
|
|
|
Syntax | wf 4778 |
Extend the definition of a wff to include the function predicate with
domain and codomain. (Read: maps into .)
|
|
|
Syntax | wf1 4779 |
Extend the definition of a wff to include one-to-one functions. (Read:
maps one-to-one into .) The notation
("1-1" above the
arrow) is from Definition 6.15(5) of [TakeutiZaring] p. 27.
|
|
|
Syntax | wfo 4780 |
Extend the definition of a wff to include onto functions. (Read:
maps onto .) The notation
("onto" below the arrow) is from
Definition 6.15(4) of [TakeutiZaring] p. 27.
|
|
|
Syntax | wf1o 4781 |
Extend the definition of a wff to include one-to-one onto functions.
(Read: maps
one-to-one onto .) The notation
("1-1"
above the arrow and "onto" below the arrow) is from Definition
6.15(6) of
[TakeutiZaring] p. 27.
|
|
|
Syntax | cfv 4782 |
Extend the definition of a class to include the value of a function.
(Read: The value of at , or
" of .")
|
|
|
Syntax | wiso 4783 |
Extend the definition of a wff to include the isomorphism property.
(Read: is an
, isomorphism of onto .)
|
|
|
Syntax | c2nd 4784 |
Extend the definition of a class to include the second function.
|
|
|
Definition | df-xp 4785* |
Define the cross product of two classes. Definition 9.11 of [Quine]
p. 64. (Contributed by SF, 5-Jan-2015.)
|
|
|
Definition | df-cnv 4786* |
Define the converse of a class. Definition 9.12 of [Quine] p. 64. We
use Quine's breve accent (smile) notation. Like Quine, we use it as a
prefix, which eliminates the need for parentheses. Many authors use the
postfix superscript "to the minus one." "Converse"
is Quine's
terminology; some authors call it "inverse," especially when
the
argument is a function. (Contributed by SF, 5-Jan-2015.)
|
|
|
Definition | df-rn 4787 |
Define the range of a class. The notation " " is used by
Enderton; other authors sometimes use script R or script W. (Contributed
by SF, 5-Jan-2015.)
|
|
|
Definition | df-dm 4788 |
Define the domain of a class. The notation " " is used by
Enderton; other authors sometimes use script D. (Contributed by SF,
5-Jan-2015.)
|
|
|
Definition | df-res 4789 |
Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring]
p. 24. (Contributed by SF, 5-Jan-2015.)
|
|
|
Definition | df-fun 4790 |
Define a function. Definition 10.1 of [Quine] p.
65. For alternate
definitions, see dffun2 5120, dffun3 5121, dffun4 5122, dffun5 5123, dffun6 5125,
dffun7 5134, dffun8 5135, and dffun9 5136. (Contributed by SF, 5-Jan-2015.)
(Revised by Scott Fenton, 14-Apr-2021.)
|
|
|
Definition | df-fn 4791 |
Define a function with domain. Definition 6.15(1) of [TakeutiZaring]
p. 27. For alternate definitions, see dffn2 5225, dffn3 5230, dffn4 5276, and
dffn5 5364. (Contributed by SF, 5-Jan-2015.)
|
|
|
Definition | df-f 4792 |
Define a function (mapping) with domain and codomain. Definition
6.15(3) of [TakeutiZaring] p. 27.
For alternate definitions, see
dff2 5420, dff3 5421, and dff4 5422.
(Contributed by SF, 5-Jan-2015.)
|
|
|
Definition | df-f1 4793 |
Define a one-to-one function. For equivalent definitions see dff12 5258
and dff13 5472. Compare Definition 6.15(5) of [TakeutiZaring] p. 27. We
use their notation ("1-1" above the arrow). (Contributed by
SF,
5-Jan-2015.)
|
|
|
Definition | df-fo 4794 |
Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27.
We use their notation ("onto" under the arrow). For alternate
definitions, see dffo2 5274, dffo3 5423, dffo4 5424, and dffo5 5425.
(Contributed by SF, 5-Jan-2015.)
|
|
|
Definition | df-f1o 4795 |
Define a one-to-one onto function. For equivalent definitions see
dff1o2 5292, dff1o3 5293, dff1o4 5295, and dff1o5 5296. Compare Definition
6.15(6) of [TakeutiZaring] p. 27.
We use their notation ("1-1" above
the arrow and "onto" below the arrow). (Contributed by SF,
5-Jan-2015.)
|
|
|
Definition | df-fv 4796* |
Define the value of a function. (Contributed by SF, 5-Jan-2015.)
|
|
|
Definition | df-iso 4797* |
Define the isomorphism predicate. We read this as " is an ,
isomorphism
of onto ." Normally, and are
ordering relations on and
respectively. Definition 6.28 of
[TakeutiZaring] p. 32, whose
notation is the same as ours except that
and are subscripts.
(Contributed by SF, 5-Jan-2015.)
|
|
|
Definition | df-2nd 4798* |
Define the
function. This function extracts the second member
of an ordered pair. (Contributed by SF, 5-Jan-2015.)
|
|
|
Theorem | xpeq1 4799 |
Equality theorem for cross product. (Contributed by NM, 4-Jul-1994.)
|
|
|
Theorem | xpeq2 4800 |
Equality theorem for cross product. (Contributed by NM, 5-Jul-1994.)
|
|