| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 19.26-2 | GIF version | ||
| Description: Theorem 19.26 of [Margaris] p. 90 with two quantifiers. (Contributed by NM, 3-Feb-2005.) |
| Ref | Expression |
|---|---|
| 19.26-2 | ⊢ (∀x∀y(φ ∧ ψ) ↔ (∀x∀yφ ∧ ∀x∀yψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26 1593 | . . 3 ⊢ (∀y(φ ∧ ψ) ↔ (∀yφ ∧ ∀yψ)) | |
| 2 | 1 | albii 1566 | . 2 ⊢ (∀x∀y(φ ∧ ψ) ↔ ∀x(∀yφ ∧ ∀yψ)) |
| 3 | 19.26 1593 | . 2 ⊢ (∀x(∀yφ ∧ ∀yψ) ↔ (∀x∀yφ ∧ ∀x∀yψ)) | |
| 4 | 2, 3 | bitri 240 | 1 ⊢ (∀x∀y(φ ∧ ψ) ↔ (∀x∀yφ ∧ ∀x∀yψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 ∀wal 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: opelopabt 4700 fun11 5160 |
| Copyright terms: Public domain | W3C validator |