New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.26 | GIF version |
Description: Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 147. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
Ref | Expression |
---|---|
19.26 | ⊢ (∀x(φ ∧ ψ) ↔ (∀xφ ∧ ∀xψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 443 | . . . 4 ⊢ ((φ ∧ ψ) → φ) | |
2 | 1 | alimi 1559 | . . 3 ⊢ (∀x(φ ∧ ψ) → ∀xφ) |
3 | simpr 447 | . . . 4 ⊢ ((φ ∧ ψ) → ψ) | |
4 | 3 | alimi 1559 | . . 3 ⊢ (∀x(φ ∧ ψ) → ∀xψ) |
5 | 2, 4 | jca 518 | . 2 ⊢ (∀x(φ ∧ ψ) → (∀xφ ∧ ∀xψ)) |
6 | id 19 | . . 3 ⊢ ((φ ∧ ψ) → (φ ∧ ψ)) | |
7 | 6 | alanimi 1562 | . 2 ⊢ ((∀xφ ∧ ∀xψ) → ∀x(φ ∧ ψ)) |
8 | 5, 7 | impbii 180 | 1 ⊢ (∀x(φ ∧ ψ) ↔ (∀xφ ∧ ∀xψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: 19.26-2 1594 19.26-3an 1595 19.35 1600 19.43OLD 1606 albiim 1611 2albiim 1612 19.27 1869 19.28 1870 ax12olem2 1928 ax11eq 2193 ax11el 2194 2eu4 2287 bm1.1 2338 r19.26m 2749 unss 3437 ralunb 3444 ssin 3477 intun 3958 intpr 3959 eqopr 4847 |
Copyright terms: Public domain | W3C validator |