NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  19.26-3an GIF version

Theorem 19.26-3an 1595
Description: Theorem 19.26 of [Margaris] p. 90 with triple conjunction. (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
19.26-3an (x(φ ψ χ) ↔ (xφ xψ xχ))

Proof of Theorem 19.26-3an
StepHypRef Expression
1 19.26 1593 . . 3 (x((φ ψ) χ) ↔ (x(φ ψ) xχ))
2 19.26 1593 . . . 4 (x(φ ψ) ↔ (xφ xψ))
32anbi1i 676 . . 3 ((x(φ ψ) xχ) ↔ ((xφ xψ) xχ))
41, 3bitri 240 . 2 (x((φ ψ) χ) ↔ ((xφ xψ) xχ))
5 df-3an 936 . . 3 ((φ ψ χ) ↔ ((φ ψ) χ))
65albii 1566 . 2 (x(φ ψ χ) ↔ x((φ ψ) χ))
7 df-3an 936 . 2 ((xφ xψ xχ) ↔ ((xφ xψ) xχ))
84, 6, 73bitr4i 268 1 (x(φ ψ χ) ↔ (xφ xψ xχ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   w3a 934  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator