New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.26-3an | GIF version |
Description: Theorem 19.26 of [Margaris] p. 90 with triple conjunction. (Contributed by NM, 13-Sep-2011.) |
Ref | Expression |
---|---|
19.26-3an | ⊢ (∀x(φ ∧ ψ ∧ χ) ↔ (∀xφ ∧ ∀xψ ∧ ∀xχ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 1593 | . . 3 ⊢ (∀x((φ ∧ ψ) ∧ χ) ↔ (∀x(φ ∧ ψ) ∧ ∀xχ)) | |
2 | 19.26 1593 | . . . 4 ⊢ (∀x(φ ∧ ψ) ↔ (∀xφ ∧ ∀xψ)) | |
3 | 2 | anbi1i 676 | . . 3 ⊢ ((∀x(φ ∧ ψ) ∧ ∀xχ) ↔ ((∀xφ ∧ ∀xψ) ∧ ∀xχ)) |
4 | 1, 3 | bitri 240 | . 2 ⊢ (∀x((φ ∧ ψ) ∧ χ) ↔ ((∀xφ ∧ ∀xψ) ∧ ∀xχ)) |
5 | df-3an 936 | . . 3 ⊢ ((φ ∧ ψ ∧ χ) ↔ ((φ ∧ ψ) ∧ χ)) | |
6 | 5 | albii 1566 | . 2 ⊢ (∀x(φ ∧ ψ ∧ χ) ↔ ∀x((φ ∧ ψ) ∧ χ)) |
7 | df-3an 936 | . 2 ⊢ ((∀xφ ∧ ∀xψ ∧ ∀xχ) ↔ ((∀xφ ∧ ∀xψ) ∧ ∀xχ)) | |
8 | 4, 6, 7 | 3bitr4i 268 | 1 ⊢ (∀x(φ ∧ ψ ∧ χ) ↔ (∀xφ ∧ ∀xψ ∧ ∀xχ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∧ w3a 934 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |