New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbv3hv | GIF version |
Description: Lemma for ax10 1944. Similar to cbv3h 1983. Requires distinct variables but avoids ax-12 1925. (Contributed by NM, 25-Jul-2015.) (Proof shortened by Wolf Lammen, 29-Dec-2017.) |
Ref | Expression |
---|---|
cbv3hv.1 | ⊢ (φ → ∀yφ) |
cbv3hv.2 | ⊢ (ψ → ∀xψ) |
cbv3hv.3 | ⊢ (x = y → (φ → ψ)) |
Ref | Expression |
---|---|
cbv3hv | ⊢ (∀xφ → ∀yψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbv3hv.1 | . . 3 ⊢ (φ → ∀yφ) | |
2 | 1 | alimi 1559 | . 2 ⊢ (∀xφ → ∀x∀yφ) |
3 | a9ev 1656 | . . . . . . 7 ⊢ ∃x x = y | |
4 | cbv3hv.3 | . . . . . . . 8 ⊢ (x = y → (φ → ψ)) | |
5 | 4 | eximi 1576 | . . . . . . 7 ⊢ (∃x x = y → ∃x(φ → ψ)) |
6 | 3, 5 | ax-mp 5 | . . . . . 6 ⊢ ∃x(φ → ψ) |
7 | 6 | 19.35i 1601 | . . . . 5 ⊢ (∀xφ → ∃xψ) |
8 | cbv3hv.2 | . . . . . 6 ⊢ (ψ → ∀xψ) | |
9 | 8 | 19.9h 1780 | . . . . 5 ⊢ (∃xψ ↔ ψ) |
10 | 7, 9 | sylib 188 | . . . 4 ⊢ (∀xφ → ψ) |
11 | 10 | alimi 1559 | . . 3 ⊢ (∀y∀xφ → ∀yψ) |
12 | 11 | a7s 1735 | . 2 ⊢ (∀x∀yφ → ∀yψ) |
13 | 2, 12 | syl 15 | 1 ⊢ (∀xφ → ∀yψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |