| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 19.38 | GIF version | ||
| Description: Theorem 19.38 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Wolf Lammen, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| 19.38 | ⊢ ((∃xφ → ∀xψ) → ∀x(φ → ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex 1543 | . . 3 ⊢ (∀x ¬ φ ↔ ¬ ∃xφ) | |
| 2 | pm2.21 100 | . . . 4 ⊢ (¬ φ → (φ → ψ)) | |
| 3 | 2 | alimi 1559 | . . 3 ⊢ (∀x ¬ φ → ∀x(φ → ψ)) |
| 4 | 1, 3 | sylbir 204 | . 2 ⊢ (¬ ∃xφ → ∀x(φ → ψ)) |
| 5 | ax-1 6 | . . 3 ⊢ (ψ → (φ → ψ)) | |
| 6 | 5 | alimi 1559 | . 2 ⊢ (∀xψ → ∀x(φ → ψ)) |
| 7 | 4, 6 | ja 153 | 1 ⊢ ((∃xφ → ∀xψ) → ∀x(φ → ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 ∃wex 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 |
| This theorem is referenced by: 19.21t 1795 19.23t 1800 |
| Copyright terms: Public domain | W3C validator |