New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfn | GIF version |
Description: If x is not free in φ, it is not free in ¬ φ. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfn.1 | ⊢ Ⅎxφ |
Ref | Expression |
---|---|
nfn | ⊢ Ⅎx ¬ φ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfn.1 | . . . 4 ⊢ Ⅎxφ | |
2 | 1 | a1i 10 | . . 3 ⊢ ( ⊤ → Ⅎxφ) |
3 | 2 | nfnd 1791 | . 2 ⊢ ( ⊤ → Ⅎx ¬ φ) |
4 | 3 | trud 1323 | 1 ⊢ Ⅎx ¬ φ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ⊤ wtru 1316 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: nfnan 1825 nfanOLD 1826 nfor 1836 nfexOLD 1844 19.32 1875 nfnae 1956 equsex 1962 spime 1976 cbvex 1985 ax15 2021 sb8e 2093 mo 2226 euor 2231 euor2 2272 2mo 2282 nfne 2611 nfnel 2612 nfrex 2670 cbvrexf 2831 spcimegf 2934 spcegf 2936 cbvrexcsf 3200 rexxpf 4829 |
Copyright terms: Public domain | W3C validator |