NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  19.41vvv GIF version

Theorem 19.41vvv 1903
Description: Theorem 19.41 of [Margaris] p. 90 with 3 quantifiers. (Contributed by NM, 30-Apr-1995.)
Assertion
Ref Expression
19.41vvv (xyz(φ ψ) ↔ (xyzφ ψ))
Distinct variable groups:   ψ,x   ψ,y   ψ,z
Allowed substitution hints:   φ(x,y,z)

Proof of Theorem 19.41vvv
StepHypRef Expression
1 19.41vv 1902 . . 3 (yz(φ ψ) ↔ (yzφ ψ))
21exbii 1582 . 2 (xyz(φ ψ) ↔ x(yzφ ψ))
3 19.41v 1901 . 2 (x(yzφ ψ) ↔ (xyzφ ψ))
42, 3bitri 240 1 (xyz(φ ψ) ↔ (xyzφ ψ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545
This theorem is referenced by:  19.41vvvv  1904  eloprabga  5579
  Copyright terms: Public domain W3C validator