| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > 19.41vv | GIF version | ||
| Description: Theorem 19.41 of [Margaris] p. 90 with 2 quantifiers. (Contributed by NM, 30-Apr-1995.) | 
| Ref | Expression | 
|---|---|
| 19.41vv | ⊢ (∃x∃y(φ ∧ ψ) ↔ (∃x∃yφ ∧ ψ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.41v 1901 | . . 3 ⊢ (∃y(φ ∧ ψ) ↔ (∃yφ ∧ ψ)) | |
| 2 | 1 | exbii 1582 | . 2 ⊢ (∃x∃y(φ ∧ ψ) ↔ ∃x(∃yφ ∧ ψ)) | 
| 3 | 19.41v 1901 | . 2 ⊢ (∃x(∃yφ ∧ ψ) ↔ (∃x∃yφ ∧ ψ)) | |
| 4 | 2, 3 | bitri 240 | 1 ⊢ (∃x∃y(φ ∧ ψ) ↔ (∃x∃yφ ∧ ψ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 | 
| This theorem is referenced by: 19.41vvv 1903 pm11.07 2115 dfpw12 4302 ltfinex 4465 setconslem4 4735 setconslem6 4737 rabxp 4815 elres 4996 fnov 5592 mpt2mptx 5709 restxp 5787 lecex 6116 | 
| Copyright terms: Public domain | W3C validator |