New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.41v | GIF version |
Description: Special case of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.41v | ⊢ (∃x(φ ∧ ψ) ↔ (∃xφ ∧ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
2 | 1 | 19.41 1879 | 1 ⊢ (∃x(φ ∧ ψ) ↔ (∃xφ ∧ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
This theorem is referenced by: 19.41vv 1902 19.41vvv 1903 19.41vvvv 1904 eeeanv 1914 gencbvex 2902 euxfr 3023 euind 3024 elpw11c 4148 elpw121c 4149 elpw131c 4150 elpw141c 4151 elpw151c 4152 elpw161c 4153 elpw171c 4154 elpw181c 4155 elpw191c 4156 elpw1101c 4157 elpw1111c 4158 eluni1g 4173 opkelcokg 4262 opkelimagekg 4272 dfimak2 4299 insklem 4305 ndisjrelk 4324 dfpw2 4328 dfaddc2 4382 dfnnc2 4396 elsuc 4414 nnsucelrlem1 4425 ltfinex 4465 ssfin 4471 eqpwrelk 4479 eqpw1relk 4480 ncfinraiselem2 4481 ncfinlowerlem1 4483 eqtfinrelk 4487 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 nnpweqlem1 4523 srelk 4525 sfintfinlem1 4532 tfinnnlem1 4534 spfinex 4538 vfinspsslem1 4551 dfop2lem1 4574 opeq 4620 opabn0 4717 setconslem1 4732 setconslem2 4733 setconslem3 4734 setconslem7 4738 df1st2 4739 dfswap2 4742 eliunxp 4822 dmuni 4915 elimapw11c 4949 dmres 4987 rnuni 5039 dminss 5042 imainss 5043 ssrnres 5060 cnvresima 5078 resco 5086 rnco 5088 coass 5098 df2nd2 5112 f11o 5316 dmsi 5520 rnoprab 5577 brimage 5794 dmtxp 5803 txpcofun 5804 addcfnex 5825 brpprod 5840 dmpprod 5841 pw1fnf1o 5856 fundmen 6044 ceexlem1 6174 el2c 6192 taddc 6230 tcfnex 6245 csucex 6260 addccan2nclem1 6264 nchoicelem11 6300 nchoicelem16 6305 |
Copyright terms: Public domain | W3C validator |