New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.9h | GIF version |
Description: A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Proof shortened by Wolf Lammen, 5-Jan-2018.) |
Ref | Expression |
---|---|
19.9h.1 | ⊢ (φ → ∀xφ) |
Ref | Expression |
---|---|
19.9h | ⊢ (∃xφ ↔ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.9h.1 | . . 3 ⊢ (φ → ∀xφ) | |
2 | 1 | nfi 1551 | . 2 ⊢ Ⅎxφ |
3 | 19.9t 1779 | . 2 ⊢ (Ⅎxφ → (∃xφ ↔ φ)) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ (∃xφ ↔ φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: 19.9 1783 19.23hOLD 1820 cbv3hv 1850 |
Copyright terms: Public domain | W3C validator |