New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.23hOLD | GIF version |
Description: Obsolete proof of 19.23h 1802 as of 1-Jan-2018. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
19.23hOLD.1 | ⊢ (ψ → ∀xψ) |
Ref | Expression |
---|---|
19.23hOLD | ⊢ (∀x(φ → ψ) ↔ (∃xφ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1575 | . . 3 ⊢ (∀x(φ → ψ) → (∃xφ → ∃xψ)) | |
2 | 19.23hOLD.1 | . . . 4 ⊢ (ψ → ∀xψ) | |
3 | 2 | 19.9h 1780 | . . 3 ⊢ (∃xψ ↔ ψ) |
4 | 1, 3 | syl6ib 217 | . 2 ⊢ (∀x(φ → ψ) → (∃xφ → ψ)) |
5 | hbe1 1731 | . . . 4 ⊢ (∃xφ → ∀x∃xφ) | |
6 | 5, 2 | hbim 1817 | . . 3 ⊢ ((∃xφ → ψ) → ∀x(∃xφ → ψ)) |
7 | 19.8a 1756 | . . . 4 ⊢ (φ → ∃xφ) | |
8 | 7 | imim1i 54 | . . 3 ⊢ ((∃xφ → ψ) → (φ → ψ)) |
9 | 6, 8 | alrimih 1565 | . 2 ⊢ ((∃xφ → ψ) → ∀x(φ → ψ)) |
10 | 4, 9 | impbii 180 | 1 ⊢ (∀x(φ → ψ) ↔ (∃xφ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |