NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  19.9 GIF version

Theorem 19.9 1783
Description: A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
Hypothesis
Ref Expression
19.9.1 xφ
Assertion
Ref Expression
19.9 (xφφ)

Proof of Theorem 19.9
StepHypRef Expression
1 19.9.1 . . 3 xφ
21nfri 1762 . 2 (φxφ)
3219.9h 1780 1 (xφφ)
Colors of variables: wff setvar class
Syntax hints:  wb 176  wex 1541  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by:  excomimOLD  1858  19.19  1862  19.36  1871  19.44  1877  19.45  1878  exdistrf  1971  exists1  2293  dfid3  4769
  Copyright terms: Public domain W3C validator