New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.9ht | GIF version |
Description: A closed version of 19.9 1783. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.9ht | ⊢ (∀x(φ → ∀xφ) → (∃xφ → φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1542 | . 2 ⊢ (∃xφ ↔ ¬ ∀x ¬ φ) | |
2 | hbnt 1775 | . . 3 ⊢ (∀x(φ → ∀xφ) → (¬ φ → ∀x ¬ φ)) | |
3 | 2 | con1d 116 | . 2 ⊢ (∀x(φ → ∀xφ) → (¬ ∀x ¬ φ → φ)) |
4 | 1, 3 | syl5bi 208 | 1 ⊢ (∀x(φ → ∀xφ) → (∃xφ → φ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: 19.9t 1779 19.9hOLD 1781 |
Copyright terms: Public domain | W3C validator |